Data Access and File
Management

vanilladb.org

http://www.vanilladb.org/

Outline

e Storage engine and data access
* Disk access

— Block-level interface
— File-level interface

* File Management in VanillaCore
— BlockID
— Page
— FileMgr

http://www.vanilladb.org/

Outline

e Storage engine and data access

http://www.vanilladb.org/

VanillaCore

Storage Engine

-~

A —

Remote.JDBC (Client/Server) J { Server
Query Interface
Tx Planner { Parse }
(Algebra
Storage Interface

N

Concu rrency] Recovery

¥

Metadata I Index I Record

Sql/Util

Y

N

Log I Buffer

I\

File

A

http://www.vanilladb.org/

Storage Engine

e Main functions:

* Data access
— File access (TableInfo, RecordFile)
— Metadata access (CatalogMgr)
— Index access (IndexInfo, Index)

* Transaction management
—Cand | (ConcurrencyMgr)
— A and D (RecoveryMgr)

http://www.vanilladb.org/

RecordFileA RecordFileB

r8 r9 r9 r10

How does a RecordFile map to an
Actual File on Disk?

FileA FileB

r8 r9 r9 r10

http://www.vanilladb.org/

RecordFileA RecordFileB
RecordPage RecordPage
r8 r9 r9 r10
/
BufferMgr /
Buffery Buffer Buffer /
\ \
Page vy Page \ Pag&

FileMgr

/

FileA e

/(./

Blockl é

BIock2'

r8 r9

FileB \
Blockl BIOCI&
r9 r10

http://www.vanilladb.org/

Why So Complicated?

We need to store data in disks
But I/O is (very) slow

— Potentially slow scans

Target: to minimize the frequency of I/Os
required by each scan

Design choices:

— Block data access

— Manage the caching of blocks by DBMS itself

http://www.vanilladb.org/

Data Access Layers (Bottom Up)

* PageandFileMgr
— Block-level disk access
— In storage. file package
* BufferandBufferMgr
— Cache pages
— Work with recover manager to ensure A and D
— In storage.buffer package
e RecordPage and RecordFile
— Arrange records in pages
— Pin/unpin buffers
— Work with recover manager to ensure A and D
— Work with concurrency manager to ensure C and |
— In storage.record package

http://www.vanilladb.org/

Outline

 Disk access
— Block-level interface
— File-level interface

http://www.vanilladb.org/

Why Disks?

* The contents of a database must be kept in
persistent storages

— So that the data will not lost if the system goes
down, ensuring D

http://www.vanilladb.org/

The Storage Hierarchy in Computers

* Primary storage is usually volatile
e Secondary storage is usually (very) slow

CPU
Latency & Size
Bandwidth & S Increases
Increases

Mass Storage
(Magnetic disk, tap, etc.)

Secondary Storage

Y

http://www.vanilladb.org/

How Slow?

* Typically, accessing a block requires
— 60ns on RAMs
— 6ms on HDDs
— 0.06ms on SSDs

e HDDs are 100,000 times slower than RAMs!
e SSDs are 1,000 times slower than RAMs!

http://www.vanilladb.org/

Disk and File Management

* |/O operations:
— Read: transfer data from disk to main memory (RAM)
— Write: transfer data from RAM to disk

CPU

g Mass Storage 2
(Magnetic disk, tap, etc.)

N

http://www.vanilladb.org/

Understanding Magnetic Disks

e Data are stored on disk in

units called sectors Diska m/D o gy st
\

e Sequential access is faster
than random access
— The disk arm movement is
slow
e Access time is the sum of
the seek time, rotational
delay, and transfer time

Block

http://www.vanilladb.org/

Access Delay

Seek time: 1720 ms

Rotational delay: 0~10 ms

Transfer rate is about 1 ms per 4KB page
Seek time and rotational delay dominate

http://www.vanilladb.org/

How about SSDs?

* Typically under 0.1 ms delay for random
access

e Sequential access may still be faster than
random access

— SSDs read/write an entire block even when only a
small portion is needed
* But if reads/writes are all comparable in size

to a block, there will be no much performance
difference

http://www.vanilladb.org/

OS’s Disk Access APIs

* OS provides two disk access APIs:

* Block-level interface
— A disk is formatted and mounted as a raw disk
— Seen as a collection of blocks

* File-level interface

— A disk is formatted and accessed by following a
particular protocol

e E.g., FAT, NTFS, EXT, NFS, etc.
— Seen as a collection of files (and directories)

http://www.vanilladb.org/

Outline

e Storage engine and data access

 Disk access

— Block-level interface
— File-level interface

* File Management in VanillaCore
— BlockID
— Page
— FileMgr

N

http://www.vanilladb.org/

Block-Level Interface

* Disks may have different hardware
characteristics

— In particular, different sector sizes

* OS hides the sectors behind blocks
— The unit of I/O above OS
— Size determined by OS

http://www.vanilladb.org/

Translation

* OS maintains the mapping between blocks
and sectors

e Single-layer translation:

— Upon each call, OS translates from the block
number (starting from 0) to the actual sector
address

http://www.vanilladb.org/

Block-Level Interface

* The contents of a block cannot be accessed
directly from the disk

— May be mapped to more than one sectors

* |nstead, the sectors comprising the block must

first be read into a memory page and -
accessed from there 11

. Page:.a block-size area S i \
in main memory /)
A

Disk Main Memory \’

22

http://www.vanilladb.org/

Block-Level Interface to the Disk

Example API:
— readblock (n, p)

* reads the bytes at block n into page p of memory
— writeblock(n, p)

* writes the bytes in page p to block n of the disk
— allocate(k, n)

* finds k contiguous unused blocks on disk and marks them as used
* New blocks should be located as close to block n as possible

— deallocate (k, n)
* marks the k contiguous blocks starting with block n as unused

OS also tracks of which blocks on disk are available for
allocation

http://www.vanilladb.org/

Outline

e Storage engine and data access
e Disk access

— Block-level interface
— File-level interface

* File Management in VanillaCore
— BlockID
— Page
— FileMgr

N

http://www.vanilladb.org/

File-Level Interface

OS provides another, higher-level interface to
the disk, called the file system

A file is a sequence of bytes

Clients can read/write any number of bytes
starting at any position in the file

No notion of block at this level

http://www.vanilladb.org/

File-Level Interface

* E.g., the Java class RandomAccessFile

* To increment 4 bytes stored in the file “file1”
at offset 700:

RandomAccessFile f = new RandomAccessFile("filel", "rws");

f.seek(700);
int n = f.readInt(); // after reading pointer moves to 704

f.seek(700);
f.writeInt(n + 1);

f.close();

N

http://www.vanilladb.org/

File-Level Interface

Note that the calls to readInt and
writelInt act as if the disk were being
accessed directly

Block access?

— Yes
— What does the “s” mode mean?

OS hides the pages, called I/0 buffers, for file
1/Os

OS also hides the blocks of a file

http://www.vanilladb.org/

Hidden Blocks of a File

* OS treats a file as a sequence of logical blocks
— For example, if blocks are 4096 bytes long
— Byte 700 is in logical block O
— Byte 7992 is in logical block 1

* Logical blocks # physical blocks (that format a
disk)

* OS maintains the mapping between the logical
and physical blocks
— Specific to file system implementation

http://www.vanilladb.org/

Continuous Allocation

TR
S

count
o] 1] 2[] 3[]
f
4[] s[] e[] 7]
8] o[11o[111[]
tr
12[J13[J14[J15[]
16117118119]
mail
20[J21[J22[J23[]
24251261271

list

28[]29[130[131[]

directory

file

count 0 2

tr

list
f

3
mail 19 6
4
2

start length

14

28
6

R

Stores each file in continuous
physical blocks

Cons:

— Internal fragmentation

— External fragmentation

N

http://www.vanilladb.org/

Extent-Based Allocation

* Stores a file as a fixed-length sequence of
extents

— An extent is a continuous chunk of physical blocks

* Reduces external fragmentation only

http://www.vanilladb.org/

Indexed Allocation

* Keeps a special index block for each file

— Which records of the physical blocks allocated to

the file |
/—\ directory

T —— file index block
o] 1:1\25 3] eop 19
4[] 5[] 7]
8] o J1o[N110]
12018 H1aNs ||

16 1811 /
20[J21[J22 23[]
24[J2s[J2e[127[]

28 J29[J30[131[]
N -

http://www.vanilladb.org/

Translation

When seek is called

Layer 1: byte position = logical block
Layer 2: logical block = physical block

Layer 3: physical block = sectors

http://www.vanilladb.org/

Outline

* File Management in VanillaCore
— BlockID
— Page
— FileMgr

http://www.vanilladb.org/

Disk Manager

e Target: access data in disks as fast as possible
* Two types:

— Based on the low-level block API
— Based on the file system

e At which level?

http://www.vanilladb.org/

Block-Level Based

* Pros:

— Full control to the physical positions of data

* E.g., blocks accessed together can be stored nearby on
disk, or

* Most frequent blocks at middle tracks, etc.
— Avoids OS limitations
* E.g., larger files, even spanning multiple disks

http://www.vanilladb.org/

Block-Level Based

e Cons:

— Complex to implement

* Needs to manage the entire disk partitions and its free
space

— Inconvenient to some utilities such as (file)
backups

— “Raw disk” access is often OS-specific, which hurts
portability

* Adopted by some commercial database
systems that offer extreme performance

http://www.vanilladb.org/

File-Level Based

* Pros:

— Easy and convenient

* Cons:
— Loses control to physical data placement
— Loses track of pages (and their replacement)

— Some implementations (e.g., postponed or
reordered writes) destroy correctness

 DBMS must flush by itself to guarantee ACID

http://www.vanilladb.org/

VanillaCore’s Choice

A compromise strategy: at file-level, but access logical
blocks directly

Pros:

— Simple

— Manageable locality in a block

— Manageable pages (provided not swapped by OS)
Cons:

— Needs to assume random disk access across blocks
— Even in sequential scans

Minimizing 1/Os = minimizing block access
Adopted by many DBMS too

— Microsoft Access, Oracle, etc.

http://www.vanilladb.org/

File Manager

* BlockId, Pageand FileMgr

* |[n package:
org.vanilladb.core.storage.file

http://www.vanilladb.org/

File Manager

VanillaCore

-~

Remote.JDBC (Client/Server) J { Server
Query Interface
Tx Planner { Parse }

Algebra

Storage Interface

ConcurrencyIRecovery Metadata I Index I Record Sql/util

Log T Buffer

File

http://www.vanilladb.org/

BlockId

* Immutable
 |dentifies a specific logical block
— A file name + logical block number

* For example,
— BlockId blk = new BlockId("std.tbl", 23);

Blockld

+ Blockld(filename : String, blknum : long)
+ fileName() : String

+ number() : long

+ equals(Obiject : obj) : boolean

+ toString() : String

+ hachCode() : int

http://www.vanilladb.org/

Page

Holds the contents of a block
— Backed by an I/O buffer in OS

Not tied to a specific block
Read/write/append an entire block a time
Set values are not flushed

Page

<<final>> + BLOCK_SIZE : int

+ maxSize(type : Type) : int
+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : Blockld)

<<synchronized>> + write(blk : Blockld)

<<synchronized>> + append(filename : String) : Blockld
<<synchronized>> + getVal(offset : int, type : Type) : Constant
<<synchronized>> + setVal(offset : int, val : Constant)

+ close()

http://www.vanilladb.org/

F'11leMgr

Singleton

Keeps all opened files of a database

— Each file is opened once and shared by all worker threads
Wrapped by pages

Handles the actual 1/Os

FileMgr

<<final>> + HOME DIR : String
<<final>> + LOG FILE BASE DIR : String
<<final>> + TMP FILE NAME PREFIX : String

+ FileMgr(dbname : String)

~ read(blk : Blockld, bb : loBuffer)

~ write(blk : Blockld, bb : loBuffer)

~ append(filename : String, bb : loBuffer) : Blocklid
+ size(filename : String) : long

+ isNew() : boolean

http://www.vanilladb.org/

Using the VanillaCore File Manager

VanillaDb.initFileMgr("studentdb");
FileMgr fm = VanillaDb.fileMgr();

BlockId blkl = new BlockId("student.tbl", 0);
Page pl = new Page();

pl.read(blkl);

Constant sid = pl.getVal(34, Type.INTEGER);
Type snameType = Type.VARCHAR(20);

Constant sname = pl.getVal(38, snameType);

System.out.println("student " + sid + " 1is

n n

+ sname);

Page p2 = new Page();

p2.setVal(34, new IntegerConstant(25));

Constant newName = new VarcharConstant("Rob").castTo(snameType);
p2.setVal(38, newName);

BlockId blk2 = p2.append("student.tbl");

http://www.vanilladb.org/

Files

A VanillaCore database is stored in several files
under the database directory

— One file for each table and index

* Including catalog files
e E.g., xxx.tbl, tblcat.tbl

— Log files
* E.g., vanilladb.log

http://www.vanilladb.org/

1/0O Interfaces

e Between VanillaCore and the outside world
(i.e., JVM and OS)
 Two implementations:

— Java New |/O
—Jaydio (O Direct, Linux only)

* To switch between these implementations,
change the value of USING O Direct
property in vanilladb.properties file

http://www.vanilladb.org/

Java New |/O

* Java New I/O provides ByteBuffer to store
bytes and FF'ileChannel to access files

* ByteBuffer hastwo factory methods:
allocateandallocateDirect

— allocateDirect tells JVM to use one of the OS’s
/0 buffers to hold the bytes

— Not in Java programmable buffer, no garbage
collection

— Eliminates the redundancy of double buffering

http://www.vanilladb.org/

Jaydio

e Jaydio provides similar interfaces to Java New
/0

* The only difference we considered to use it
was it provides O Direct

— Some file systems (on Linux) cache file pages in its
buffers for the performance reason

— O Direct tells those file systems not to cache
file pages as we have already had our own buffers

— It is only available on Linux

http://www.vanilladb.org/

Assigned Reading

e Java new |/O

—In Java.nio
e Classes:

—ByteBuffer
—FileChannel

http://www.vanilladb.org/
http://docs.oracle.com/javase/tutorial/essential/io/file.html

References

Ramakrishnan Gehrke, Database management
System 3/e, chapters 8 and 9

Edward Sciore, Database Design and
mplementation, chapter 12

Hellerstein, J. M., Stonebraker, M., and Hamilton,
J., Architecture of a database system, 2007

Hussein M. Abdel-Wahab, CS 471 — Operating
Systems Slides, http://www.cs.odu.edu/~cs471w/

http://www.vanilladb.org/

