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Storage Engine

• Main functions:

• Data access

– File access (TableInfo, RecordFile)

– Metadata access (CatalogMgr)

– Index access (IndexInfo, Index)

• Transaction management

– C and I (ConcurrencyMgr)

– A and D (RecoveryMgr)

5

http://www.vanilladb.org/


How does a RecordFile map to an 
Actual File on Disk?
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Why So Complicated?

• We need to store data in disks

• But I/O is (very) slow

– Potentially slow scans

• Target: to minimize the frequency of I/Os
required by each scan

• Design choices:

– Block data access

– Manage the caching of blocks by DBMS itself

8
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Data Access Layers (Bottom Up)

• Page and FileMgr
– Block-level disk access
– In storage.file package

• Buffer and BufferMgr
– Cache pages
– Work with recover manager to ensure A and D
– In storage.buffer package 

• RecordPage and RecordFile
– Arrange records in pages
– Pin/unpin buffers
– Work with recover manager to ensure A and D
– Work with concurrency manager to ensure C and I
– In storage.record package

• Index 

• CatalogMgr
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Why Disks?

• The contents of a database must be kept in  
persistent storages

– So that the data will not lost if the system goes 
down, ensuring D

11
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The Storage Hierarchy in Computers

• Primary storage is usually volatile

• Secondary storage is usually (very) slow

Mass Storage
(Magnetic disk, tap, etc. )

Main Memory

Cache

CPU

Bandwidth & $ 
Increases

Latency & Size 
Increases

Primary Storage

Secondary Storage
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How Slow?

• Typically, accessing a block requires

– 60ns on RAMs

– 6ms on HDDs

– 0.06ms on SSDs

• HDDs are 100,000 times slower than RAMs!

• SSDs are 1,000 times slower than RAMs!

13

http://www.vanilladb.org/


Disk and File Management

• I/O operations:

– Read: transfer data from disk to main memory (RAM)

– Write: transfer data from RAM to disk

Mass Storage
(Magnetic disk, tap, etc. )

Main Memory

Cache

CPU
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Understanding Magnetic Disks

• Data are stored on disk in 
units called sectors

• Sequential access is faster 
than random access

– The disk arm movement is 
slow

• Access time is the sum of 
the seek time, rotational 
delay, and transfer time

From Database Management System 2/e, Ramakrishnan.
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Access Delay

• Seek time: 1~20 ms

• Rotational delay: 0~10 ms

• Transfer rate is about 1 ms per 4KB page

• Seek time and rotational delay dominate

16
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How about SSDs?

• Typically under 0.1 ms delay for random 
access

• Sequential access may still be faster than 
random access
– SSDs read/write an entire block even when only a 

small portion is needed

• But if reads/writes are all comparable in size 
to a block, there will be no much performance 
difference

17
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OS’s Disk Access APIs

• OS provides two disk access APIs:

• Block-level interface
– A disk is formatted and mounted as a raw disk

– Seen as a collection of blocks

• File-level interface
– A disk is formatted and accessed by following a 

particular protocol 
• E.g., FAT, NTFS, EXT, NFS, etc.

– Seen as a collection of files (and directories)
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Block-Level Interface

• Disks may have different hardware 
characteristics

– In particular, different sector sizes

• OS hides the sectors behind blocks

– The unit of I/O above OS

– Size determined by OS

20
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Translation

• OS maintains the mapping between blocks 
and sectors

• Single-layer translation:

– Upon each call, OS translates from the block 
number (starting from 0) to the actual sector 
address

21
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Block-Level Interface

• The contents of a block cannot be accessed 
directly from the disk

– May be mapped to more than one sectors

• Instead, the sectors comprising the block must 
first be read into a memory page and 
accessed from there

• Page: a block-size area
in main memory

Disk Main Memory

Client 
Application

22
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Block-Level Interface to the Disk

• Example API:
– readblock(n, p)

• reads the bytes at block n into page p of memory

– writeblock(n, p)

• writes the bytes in page p to block n of the disk

– allocate(k, n)

• finds k contiguous unused blocks on disk and marks them as used

• New blocks should be located as close to block n as possible

– deallocate(k, n)

• marks the k contiguous blocks starting with block n as unused

• OS also tracks of which blocks on disk are available for 
allocation
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File-Level Interface

• OS provides another, higher-level interface to 
the disk, called the file system

• A file is a sequence of bytes

• Clients can read/write any number of bytes 
starting at any position in the file

• No notion of block at this level

25
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File-Level Interface

• E.g., the Java class RandomAccessFile

• To increment 4 bytes stored in the file “file1” 
at offset 700:

RandomAccessFile f = new RandomAccessFile("file1", "rws");

f.seek(700);
int n = f.readInt();  // after reading pointer moves to 704

f.seek(700);
f.writeInt(n + 1);

f.close();
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File-Level Interface

• Note that the calls to readInt and 
writeInt act as if the disk were being 
accessed directly

• Block access?
– Yes

– What does the “s” mode mean?

• OS hides the pages, called I/O buffers, for file 
I/Os

• OS also hides the blocks of a file

27
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Hidden Blocks of a File

• OS treats a file as a sequence of logical blocks
– For example, if blocks are 4096 bytes long

– Byte 700 is in logical block 0

– Byte 7992 is in logical block 1

• Logical blocks ≠ physical blocks (that format a 
disk)

• OS maintains the mapping between the logical 
and physical blocks
– Specific to file system implementation

28
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Continuous Allocation

• Stores each file in continuous 
physical blocks

• Cons:
– Internal fragmentation

– External fragmentation

From Hussein M. Abdel-Wahab , CS 471 – Operating Systems Slides. http://www.cs.odu.edu/~cs471w/
29
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Extent-Based Allocation

• Stores a file as a fixed-length sequence of 
extents

– An extent is a continuous chunk of physical blocks

• Reduces external fragmentation only
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From Hussein M. Abdel-Wahab, CS 471 – Operating Systems Slides. http://www.cs.odu.edu/~cs471w/

Indexed Allocation

• Keeps a special index block for each file 

– Which records of the physical blocks allocated to 
the file
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Translation

• When seek is called

• Layer 1: byte position  logical block

• Layer 2: logical block  physical block

• Layer 3: physical block  sectors

32
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Disk Manager

• Target: access data in disks as fast as possible

• Two types:

– Based on the low-level block API

– Based on the file system

• At which level?

34
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Block-Level Based

• Pros:

– Full control to the physical positions of data

• E.g., blocks accessed together can be stored nearby on 
disk, or 

• Most frequent blocks at middle tracks, etc.

– Avoids OS limitations

• E.g., larger files, even spanning multiple disks

35
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Block-Level Based

• Cons:
– Complex to implement

• Needs to manage the entire disk partitions and its free 
space

– Inconvenient to some utilities such as (file) 
backups

– “Raw disk” access is often OS-specific, which hurts 
portability

• Adopted by some commercial database 
systems that offer extreme performance
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File-Level Based

• Pros:

– Easy and convenient

• Cons:

– Loses control to physical data placement

– Loses track of pages (and their replacement)

– Some implementations (e.g., postponed or 
reordered writes) destroy correctness (e.g., WAL)

• DBMS must flush by itself to guarantee ACID

37

http://www.vanilladb.org/


VanillaCore’s Choice

• A compromise strategy: at file-level, but access logical 
blocks directly

• Pros:
– Simple
– Manageable locality in a block
– Manageable pages (provided not swapped by OS) 

• Cons:
– Needs to assume random disk access across blocks
– Even in sequential scans

• Minimizing I/Osminimizing block access
• Adopted by many DBMS too

– Microsoft Access, Oracle, etc.
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File Manager

• BlockId, Page and FileMgr

• In package: 
org.vanilladb.core.storage.file

39
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BlockId

• Immutable
• Identifies a specific logical block

– A file name + logical block number

• For example, 
– BlockId blk = new BlockId("std.tbl", 23);

BlockId

+ BlockId(filename : String, blknum : long)

+ fileName() : String

+ number() : long

+ equals(Object : obj) : boolean

+ toString() : String

+ hachCode() : int
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Page

• Holds the contents of a block
– Backed by an I/O buffer in OS

• Not tied to a specific block
• Read/write/append an entire block a time
• Set values are not flushed

42

Page

<<final>> + BLOCK_SIZE : int

+ maxSize(type : Type) : int

+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : BlockId)

<<synchronized>> + write(blk : BlockId)

<<synchronized>> + append(filename : String) : BlockId

<<synchronized>> + getVal(offset : int, type : Type) : Constant

<<synchronized>> + setVal(offset : int, val : Constant)

+ close()

http://www.vanilladb.org/


FileMgr

• Singleton
• Keeps all opened files of a database

– Each file is opened once and shared by all worker threads

• Wrapped by pages
• Handles the actual I/Os
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FileMgr

<<final>> + HOME_DIR : String

<<final>> + LOG_FILE_BASE_DIR : String

<<final>> + TMP_FILE_NAME_PREFIX : String

+ FileMgr(dbname : String)

~ read(blk : BlockId, bb : IoBuffer)

~ write(blk : BlockId, bb : IoBuffer)

~ append(filename : String, bb : IoBuffer) : BlockId

+ size(filename : String) : long

+ isNew() : boolean
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Using the VanillaCore File Manager

VanillaDb.initFileMgr("studentdb");
FileMgr fm = VanillaDb.fileMgr();

BlockId blk1 = new BlockId("student.tbl", 0);
Page p1 = new Page();
p1.read(blk1);
Constant sid = p1.getVal(34, Type.INTEGER);
Type snameType = Type.VARCHAR(20);
Constant sname = p1.getVal(38, snameType);
System.out.println("student " + sid + " is " + sname);

Page p2 = new Page();
p2.setVal(34, new IntegerConstant(25));
Constant newName = new VarcharConstant("Rob").castTo(snameType);
p2.setVal(38, newName);
BlockId blk2 = p2.append("student.tbl");
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Files

• A VanillaCore database is stored in several files 
under the database directory

– One file for each table and index

• Including catalog files

• E.g., xxx.tbl, tblcat.tbl

– Log files

• E.g., vanilladb.log
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I/O Interfaces

• Between VanillaCore and the outside world 
(i.e., JVM and OS)

• Two implementations:
– Java New I/O

– Jaydio (O_Direct, Linux only)

• To switch between these implementations, 
change the value of USING_O_Direct
property in vanilladb.properties file
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Java New I/O

• Java New I/O provides ByteBuffer to store 
bytes and FileChannel to access files

• ByteBuffer has two factory methods: 
allocate and allocateDirect
– allocateDirect tells JVM to use one of the OS’s 

I/O buffers to hold the bytes

– Not in Java programmable buffer, no garbage 
collection

– Eliminates the redundancy of double buffering
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Jaydio

• Jaydio provides similar interfaces to Java New 
I/O

• The only difference we considered to use it 
was it provides O_Direct

– Some file systems (on Linux) cache file pages in its 
buffers for the performance reason

– O_Direct tells those file systems not to cache 
file pages as we have already had our own buffers

– It is only available on Linux
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Assigned Reading

• Java new I/O

– In java.nio

• Classes: 

–ByteBuffer

–FileChannel
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