
Data Access and File
Management

vanilladb.org

http://www.vanilladb.org/

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID

– Page

– FileMgr

2

http://www.vanilladb.org/

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID

– Page

– FileMgr

3

http://www.vanilladb.org/

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Storage Engine

4

http://www.vanilladb.org/

Storage Engine

• Main functions:

• Data access

– File access (TableInfo, RecordFile)

– Metadata access (CatalogMgr)

– Index access (IndexInfo, Index)

• Transaction management

– C and I (ConcurrencyMgr)

– A and D (RecoveryMgr)

5

http://www.vanilladb.org/

How does a RecordFile map to an
Actual File on Disk?

6

RecordFileA

...

RecordFileB

...

FileA

...

FileB

...

r8 r9

r8 r9

r9 r10

r9 r10

http://www.vanilladb.org/

7

RecordFileA

RecordPage

Buffer Buffer Buffer

BufferMgr

...

...

RecordFileB

RecordPage

...

Page Page Page

ByteBuffer ByteBuffer ByteBuffer

FileA

Block1 Block2

...

FileB

Block1 Block2

...

FileChannelA

FileMgr

FileChannelB

r8 r9

r8 r9

r9 r10

r9 r10

http://www.vanilladb.org/

Why So Complicated?

• We need to store data in disks

• But I/O is (very) slow

– Potentially slow scans

• Target: to minimize the frequency of I/Os
required by each scan

• Design choices:

– Block data access

– Manage the caching of blocks by DBMS itself

8

http://www.vanilladb.org/

Data Access Layers (Bottom Up)

• Page and FileMgr
– Block-level disk access
– In storage.file package

• Buffer and BufferMgr
– Cache pages
– Work with recover manager to ensure A and D
– In storage.buffer package

• RecordPage and RecordFile
– Arrange records in pages
– Pin/unpin buffers
– Work with recover manager to ensure A and D
– Work with concurrency manager to ensure C and I
– In storage.record package

• Index

• CatalogMgr

9

http://www.vanilladb.org/

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID

– Page

– FileMgr

10

http://www.vanilladb.org/

Why Disks?

• The contents of a database must be kept in
persistent storages

– So that the data will not lost if the system goes
down, ensuring D

11

http://www.vanilladb.org/

The Storage Hierarchy in Computers

• Primary storage is usually volatile

• Secondary storage is usually (very) slow

Mass Storage
(Magnetic disk, tap, etc.)

Main Memory

Cache

CPU

Bandwidth & $
Increases

Latency & Size
Increases

Primary Storage

Secondary Storage

12

http://www.vanilladb.org/

How Slow?

• Typically, accessing a block requires

– 60ns on RAMs

– 6ms on HDDs

– 0.06ms on SSDs

• HDDs are 100,000 times slower than RAMs!

• SSDs are 1,000 times slower than RAMs!

13

http://www.vanilladb.org/

Disk and File Management

• I/O operations:

– Read: transfer data from disk to main memory (RAM)

– Write: transfer data from RAM to disk

Mass Storage
(Magnetic disk, tap, etc.)

Main Memory

Cache

CPU

14

http://www.vanilladb.org/

Understanding Magnetic Disks

• Data are stored on disk in
units called sectors

• Sequential access is faster
than random access

– The disk arm movement is
slow

• Access time is the sum of
the seek time, rotational
delay, and transfer time

From Database Management System 2/e, Ramakrishnan.

15

http://www.vanilladb.org/

Access Delay

• Seek time: 1~20 ms

• Rotational delay: 0~10 ms

• Transfer rate is about 1 ms per 4KB page

• Seek time and rotational delay dominate

16

http://www.vanilladb.org/

How about SSDs?

• Typically under 0.1 ms delay for random
access

• Sequential access may still be faster than
random access
– SSDs read/write an entire block even when only a

small portion is needed

• But if reads/writes are all comparable in size
to a block, there will be no much performance
difference

17

http://www.vanilladb.org/

OS’s Disk Access APIs

• OS provides two disk access APIs:

• Block-level interface
– A disk is formatted and mounted as a raw disk

– Seen as a collection of blocks

• File-level interface
– A disk is formatted and accessed by following a

particular protocol
• E.g., FAT, NTFS, EXT, NFS, etc.

– Seen as a collection of files (and directories)

18

http://www.vanilladb.org/

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID

– Page

– FileMgr

19

http://www.vanilladb.org/

Block-Level Interface

• Disks may have different hardware
characteristics

– In particular, different sector sizes

• OS hides the sectors behind blocks

– The unit of I/O above OS

– Size determined by OS

20

http://www.vanilladb.org/

Translation

• OS maintains the mapping between blocks
and sectors

• Single-layer translation:

– Upon each call, OS translates from the block
number (starting from 0) to the actual sector
address

21

http://www.vanilladb.org/

Block-Level Interface

• The contents of a block cannot be accessed
directly from the disk

– May be mapped to more than one sectors

• Instead, the sectors comprising the block must
first be read into a memory page and
accessed from there

• Page: a block-size area
in main memory

Disk Main Memory

Client
Application

22

http://www.vanilladb.org/

Block-Level Interface to the Disk

• Example API:
– readblock(n, p)

• reads the bytes at block n into page p of memory

– writeblock(n, p)

• writes the bytes in page p to block n of the disk

– allocate(k, n)

• finds k contiguous unused blocks on disk and marks them as used

• New blocks should be located as close to block n as possible

– deallocate(k, n)

• marks the k contiguous blocks starting with block n as unused

• OS also tracks of which blocks on disk are available for
allocation

23

http://www.vanilladb.org/

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID

– Page

– FileMgr

24

http://www.vanilladb.org/

File-Level Interface

• OS provides another, higher-level interface to
the disk, called the file system

• A file is a sequence of bytes

• Clients can read/write any number of bytes
starting at any position in the file

• No notion of block at this level

25

http://www.vanilladb.org/

File-Level Interface

• E.g., the Java class RandomAccessFile

• To increment 4 bytes stored in the file “file1”
at offset 700:

RandomAccessFile f = new RandomAccessFile("file1", "rws");

f.seek(700);
int n = f.readInt(); // after reading pointer moves to 704

f.seek(700);
f.writeInt(n + 1);

f.close();

26

http://www.vanilladb.org/

File-Level Interface

• Note that the calls to readInt and
writeInt act as if the disk were being
accessed directly

• Block access?
– Yes

– What does the “s” mode mean?

• OS hides the pages, called I/O buffers, for file
I/Os

• OS also hides the blocks of a file

27

http://www.vanilladb.org/

Hidden Blocks of a File

• OS treats a file as a sequence of logical blocks
– For example, if blocks are 4096 bytes long

– Byte 700 is in logical block 0

– Byte 7992 is in logical block 1

• Logical blocks ≠ physical blocks (that format a
disk)

• OS maintains the mapping between the logical
and physical blocks
– Specific to file system implementation

28

http://www.vanilladb.org/

Continuous Allocation

• Stores each file in continuous
physical blocks

• Cons:
– Internal fragmentation

– External fragmentation

From Hussein M. Abdel-Wahab , CS 471 – Operating Systems Slides. http://www.cs.odu.edu/~cs471w/
29

http://www.vanilladb.org/

Extent-Based Allocation

• Stores a file as a fixed-length sequence of
extents

– An extent is a continuous chunk of physical blocks

• Reduces external fragmentation only

30

http://www.vanilladb.org/

From Hussein M. Abdel-Wahab, CS 471 – Operating Systems Slides. http://www.cs.odu.edu/~cs471w/

Indexed Allocation

• Keeps a special index block for each file

– Which records of the physical blocks allocated to
the file

31

http://www.vanilladb.org/

Translation

• When seek is called

• Layer 1: byte position  logical block

• Layer 2: logical block  physical block

• Layer 3: physical block  sectors

32

http://www.vanilladb.org/

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID

– Page

– FileMgr

33

http://www.vanilladb.org/

Disk Manager

• Target: access data in disks as fast as possible

• Two types:

– Based on the low-level block API

– Based on the file system

• At which level?

34

http://www.vanilladb.org/

Block-Level Based

• Pros:

– Full control to the physical positions of data

• E.g., blocks accessed together can be stored nearby on
disk, or

• Most frequent blocks at middle tracks, etc.

– Avoids OS limitations

• E.g., larger files, even spanning multiple disks

35

http://www.vanilladb.org/

Block-Level Based

• Cons:
– Complex to implement

• Needs to manage the entire disk partitions and its free
space

– Inconvenient to some utilities such as (file)
backups

– “Raw disk” access is often OS-specific, which hurts
portability

• Adopted by some commercial database
systems that offer extreme performance

36

http://www.vanilladb.org/

File-Level Based

• Pros:

– Easy and convenient

• Cons:

– Loses control to physical data placement

– Loses track of pages (and their replacement)

– Some implementations (e.g., postponed or
reordered writes) destroy correctness (e.g., WAL)

• DBMS must flush by itself to guarantee ACID

37

http://www.vanilladb.org/

VanillaCore’s Choice

• A compromise strategy: at file-level, but access logical
blocks directly

• Pros:
– Simple
– Manageable locality in a block
– Manageable pages (provided not swapped by OS)

• Cons:
– Needs to assume random disk access across blocks
– Even in sequential scans

• Minimizing I/Osminimizing block access
• Adopted by many DBMS too

– Microsoft Access, Oracle, etc.

38

http://www.vanilladb.org/

File Manager

• BlockId, Page and FileMgr

• In package:
org.vanilladb.core.storage.file

39

http://www.vanilladb.org/

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

File Manager

40

http://www.vanilladb.org/

BlockId

• Immutable
• Identifies a specific logical block

– A file name + logical block number

• For example,
– BlockId blk = new BlockId("std.tbl", 23);

BlockId

+ BlockId(filename : String, blknum : long)

+ fileName() : String

+ number() : long

+ equals(Object : obj) : boolean

+ toString() : String

+ hachCode() : int

41

http://www.vanilladb.org/

Page

• Holds the contents of a block
– Backed by an I/O buffer in OS

• Not tied to a specific block
• Read/write/append an entire block a time
• Set values are not flushed

42

Page

<<final>> + BLOCK_SIZE : int

+ maxSize(type : Type) : int

+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : BlockId)

<<synchronized>> + write(blk : BlockId)

<<synchronized>> + append(filename : String) : BlockId

<<synchronized>> + getVal(offset : int, type : Type) : Constant

<<synchronized>> + setVal(offset : int, val : Constant)

+ close()

http://www.vanilladb.org/

FileMgr

• Singleton
• Keeps all opened files of a database

– Each file is opened once and shared by all worker threads

• Wrapped by pages
• Handles the actual I/Os

43

FileMgr

<<final>> + HOME_DIR : String

<<final>> + LOG_FILE_BASE_DIR : String

<<final>> + TMP_FILE_NAME_PREFIX : String

+ FileMgr(dbname : String)

~ read(blk : BlockId, bb : IoBuffer)

~ write(blk : BlockId, bb : IoBuffer)

~ append(filename : String, bb : IoBuffer) : BlockId

+ size(filename : String) : long

+ isNew() : boolean

http://www.vanilladb.org/

Using the VanillaCore File Manager

VanillaDb.initFileMgr("studentdb");
FileMgr fm = VanillaDb.fileMgr();

BlockId blk1 = new BlockId("student.tbl", 0);
Page p1 = new Page();
p1.read(blk1);
Constant sid = p1.getVal(34, Type.INTEGER);
Type snameType = Type.VARCHAR(20);
Constant sname = p1.getVal(38, snameType);
System.out.println("student " + sid + " is " + sname);

Page p2 = new Page();
p2.setVal(34, new IntegerConstant(25));
Constant newName = new VarcharConstant("Rob").castTo(snameType);
p2.setVal(38, newName);
BlockId blk2 = p2.append("student.tbl");

44

http://www.vanilladb.org/

Files

• A VanillaCore database is stored in several files
under the database directory

– One file for each table and index

• Including catalog files

• E.g., xxx.tbl, tblcat.tbl

– Log files

• E.g., vanilladb.log

45

http://www.vanilladb.org/

I/O Interfaces

• Between VanillaCore and the outside world
(i.e., JVM and OS)

• Two implementations:
– Java New I/O

– Jaydio (O_Direct, Linux only)

• To switch between these implementations,
change the value of USING_O_Direct
property in vanilladb.properties file

46

http://www.vanilladb.org/

Java New I/O

• Java New I/O provides ByteBuffer to store
bytes and FileChannel to access files

• ByteBuffer has two factory methods:
allocate and allocateDirect
– allocateDirect tells JVM to use one of the OS’s

I/O buffers to hold the bytes

– Not in Java programmable buffer, no garbage
collection

– Eliminates the redundancy of double buffering

47

http://www.vanilladb.org/

Jaydio

• Jaydio provides similar interfaces to Java New
I/O

• The only difference we considered to use it
was it provides O_Direct

– Some file systems (on Linux) cache file pages in its
buffers for the performance reason

– O_Direct tells those file systems not to cache
file pages as we have already had our own buffers

– It is only available on Linux

48

http://www.vanilladb.org/

Assigned Reading

• Java new I/O

– In java.nio

• Classes:

–ByteBuffer

–FileChannel

49

http://www.vanilladb.org/
http://docs.oracle.com/javase/tutorial/essential/io/file.html

References

• Ramakrishnan Gehrke, Database management
System 3/e, chapters 8 and 9

• Edward Sciore, Database Design and
Implementation, chapter 12

• Hellerstein, J. M., Stonebraker, M., and Hamilton,
J., Architecture of a database system, 2007

• Hussein M. Abdel-Wahab, CS 471 – Operating
Systems Slides, http://www.cs.odu.edu/~cs471w/

50

http://www.vanilladb.org/

