Memory Management

vanilladb.org

http://www.vanilladb.org/

Outline

Overview

Buffering User Data

Caching Logs

Log Manager in VanillaCore
Buffer Manager in VanillaCore

http://www.vanilladb.org/

e Overview

Outline

http://www.vanilladb.org/

Consequences of Slow I/Os

* Architecture that minimizes |/Os:
— Block access to/from disks
— Self-managed caching of blocks

Clients

i

NN
NN
A Disks

Blocks

|

OS File System .
DBMS File Manager Main Memory

NV

http://www.vanilladb.org/

Minimizing Disk Access by Caching

* Observationl: although possibly ending up
with huge block accesses, each client (e.g.,
scan) focuses on a small number of blocks a
time
— E.g., to produce the next output record, a product

scan needs only two blocks a time (each from left
and right child)

* Observation 2: recently used blocks are likely
to be used in the near future

— E.g., blocks of catalogs

http://www.vanilladb.org/

34t ARITAL | | ST

} HT
& ’r.L.u.imumummql;n;amwmwmp..;.wdgw,mmm‘,mmm.. -

32

..........

uj w J'S'J‘*‘l‘

30

ll‘ -': d l‘l
.
|
|

‘l U, H; Ll
sl 0 oo g i, QUM

28

26 4

Storage address

24 1

0 1.2; 3

-

| W
b g TR g I

R It
Br' ,! 4! L.....r

il
22 |

i
20

T i ekt B q] \lulunmmlmmu: U
¥ i ! V

.uu.lH
[T T

Execution time —

IBM Systems Journal, 1971

http://www.vanilladb.org/

Minimizing Disk Access by Caching

* |dea: to reserve a pool of pages that keep the
contents of most currently used blocks

— To swap in/out blocks only when there’s no empty
page left in the pool

Clients

i

NN
N’ages

|

N\

OS File System .
DBMS File Manager Main Memory

N/

http://www.vanilladb.org/

Minimizing Disk Access by Caching

* Saves reads:
— If a requested block hits a page

e Saves writes:

— All values set to a block only need to be written once
upon swapping

Clients

i

NN
N’ages

|

NN

OS File System '
DBMS File Manager Main Memory \’
8

http://www.vanilladb.org/

Why not virtual memory?

http://www.vanilladb.org/

Virtual Memory

e Modern OSs

support virtual page 0
page 1
memory page 2 ©
* lllusion: a very large e —~ g
address space for | el |
P . (] M O
each process i [7\ A
— Larger than physical — O
{ map \\xxu__ _d,,f’/
memory f—pagev —" —

- memory
virtual
memary

http://www.vanilladb.org/

Don’t Rely on Virtual Memory (1/2)

* Problem 1: bad page replacement algorithms
— E.g., FIFO, LRU, etc.

* OS has no idea which blocks will definitely be
used by a process in the near future

— E.g., in a product scan, DBMS knows it’s best to
hold a left-child block all time during scanning the
right-child (as a select)

— But OS doesn’t

http://www.vanilladb.org/

Don’t Rely on Virtual Memory (2/2)

* Problem 2: uncontrolled delayed writes
— Due to automatic swapping

* When powered off, all dirty pages are gone

* Impairs the DBMS ability to recover after a
system crash

— E.g., durability of committed transactions

* Immediate writes?
— Impairs the caching
— Data may still corrupt due to partial writes upon crash

e Meta-writes are needed

http://www.vanilladb.org/

Self-Managed Pages in DBMS

* Pros:
e Controlled swapping

— Fewer 1/Os than VM via better replacement
strategy

— DBMS can tell which page must/cannot be flushed
* Supports meta-writes

— DBMS can tell what’s in meta-writes to recover
from crash

http://www.vanilladb.org/

What Blocks to Cache?

* Those of user data (DBs, including catalogs)

— Pages for these blocks are managed by the buffer
manager

* Those of logs of modify/insert/delete actions
— In meta-writes

— Pages managed by the log manager

http://www.vanilladb.org/

VanillaCore

Memory Management

-~

Remote.JDBC (Client/Server)

Query Interface

Tx Planner { Parse
Algebra
Storage Interface
Concu rrencyI Recovery Metadata Index Record Sql/util
Log I Buffer
File

http://www.vanilladb.org/

Outline

* Buffering User Data

http://www.vanilladb.org/

Access Pattern to User Blocks

e Random block reads and writes
— From clients directly

— Even from sequential scans (if above OS file system)

* Concurrent access to multiple blocks by multiple
threads

— Each thread per, e.g., JDBC client
* Predictable access to certain blocks

— Each scan needs certain blocks a time
— In particular, a table scan need one block a time

http://www.vanilladb.org/

Buffer Manger

* To reduce I/Os, the buffer manager allocates a
pool of pages, called buffer pool
— Caching multiple blocks
— Implement swapping

* Pages should be the direct |/O buffers held by
the OS

— Avoids swapping by VM
— Eliminates the redundancy of double buffering
—E.g., ByteBuffer.allocateDirect ()

http://www.vanilladb.org/

How do make use of predictable block
accesses to further reduce 1I/0s?

http://www.vanilladb.org/

Pinning Blocks

e Each table scan needs one block a time

— The semantic of blocks is hidden behind the
associated RecordFile

* [tisthe RecordFile that tells to memory
manager which block is needed

* Through pinning ¥

http://www.vanilladb.org/

Pinning Blocks

* When a RecordFile needs a block
1. Asks buffer manager to pin (read-in) a block in some
page
2. Client accesses the contents of the page

3. When the client is done with the block, it tells the
buffer manager to unpin the block

* When swapping, only pages containing the
unpinned blocks can be swapped out

N\

N\

NN

http://www.vanilladb.org/

Pinning Pages

e Results of pinning:
1. A hit, nol/O
2. Swapping: there exists at least one candidate

page in the buffer pool holding unpinned block

* Need to flush the page contents back to disk if the
page is dirty

* Which candidate page? replacement strategies

e Thenread in the desired block

3. Waiting: all pages in the buffer pool are pinned
Wait until some other unpins a page

http://www.vanilladb.org/

Buffers

 Each page in the buffer pool needs to associate
with additional information:
— |s contained block pinned?
— |Is contained block modified (dirty)?
— Information required by the replacement strategy

* A buffer wraps a page and hold this information

* A block can be pinned and access by multiple
clients
— Buffer must be thread safe, as page is

— DBMS needs other mechanism (i.e., concurrency
control) to serialize conflict operations to a buffer

http://www.vanilladb.org/

Example API

BufferMgr

Buffer

<<final>> # BUFFER_SIZE : int

+ BufferMgr()

<<synchronized>> + pin(blk : Blockld, txNum : long) : Buffer
<<synchronized>> + pinNew(filename : String, fmtr :
PageFormatter, txnum : long) : Buffer

<<synchronized>> + unpin(txnum : long, buffs : Buffer[])

+ flushAll(txnum : long)

+ available() : int

~ Buffer()

<<synchronized>> + getVal(offset : int, type :
Type) : Constant

<<synchronized>> + setVal(offset : int, val :
Constant , txnum : long, Isn : long)

<<synchronized>> + block() : Blockld

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) :
boolean

<<synchronized>> ~ assignToBlock(b : Blockld)

<<synchronized>> ~ assignToNew(filename :
String, fmtr : PageFormatter)

* A block can be pinned multiple times
* There’s no guarantee that pin () ’s on the same block will

return the same buffer instance

http://www.vanilladb.org/

Buffer Replacement Strategies

* All buffers in the buffer pool begin unallocated

* Once all buffers are loaded, buffer manager
has to replace the unpinned block in some
candidate buffer to serve new pin request

e Best candidate?

— The buffer containing block that will be unused for
the longest time

— Maximizes the hit rate of pins

http://www.vanilladb.org/

Buffer Replacement Strategies

 However, as in VM, access of blocks in unpinned
ouffers is not determinable

* Heuristics needed:
— Nalve
— FIFO
— LRU
— Clock
 Some commercial systems use different heuristics
for different buffer type

— E.g., catalog buffers, index buffers, buffers for full
table scan, etc.

http://www.vanilladb.org/

Example

* A sequence of operations
—pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);
* There are 4 buffers in buffer pool

Buffer 0 1 2 3
Block Id

time read in

time unpinned

http://www.vanilladb.org/

Example
* A sequence of operations
—pin(10); pin(20); pin(30); pin(40);
unpin(20);

* There are 4 buffers in buffer pool

Buffer 0 1 2 3
Block Id 10 20 30 40
time read in 1 2 3 4

time unpinned 5

http://www.vanilladb.org/

Example
* A sequence of operations
—pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50);

* There are 4 buffers in buffer pool

Buffer 0 1 2 3
Block Id 10 20 30 40
time read in 1 2 3 4

time unpinned 5

http://www.vanilladb.org/

Example
* A sequence of operations
—pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50);

* There are 4 buffers in buffer pool

Buffer 0 1 2 3
Block Id 10 50 30 40
time read in 1 6 3 4

time unpinned 5

http://www.vanilladb.org/

Example

* A sequence of operations
—pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);

* There are 4 buffers in buffer pool

Buffer 0 1 2 3
Block Id 10 50 30 40
time read in 1 6 3 4

time unpinned 8 10 9

http://www.vanilladb.org/

Example

» Suppose that there are two more pin requests

coming:

—pin(60); pin(79);
* Let’s see how different replacement strategies

work

Buffer
Block Id

0
10

50

30

40

time read in

time unpinned

10

http://www.vanilladb.org/

The Naive Strategy

* Travers the buffer pool sequentially from
beginning

* Replaces the first unpinned buffer met
—pin(60); pin(70);
e Easy to implement, but?

Buffer 0 1 2 3
Block Id 60 70 30 40

time read in 11 12 3 4
time unpinned 8 10 9 7

http://www.vanilladb.org/

The Naive Strategy

* Problem: buffers are not evenly utilized
—pin(60); unpin(60); pin(70);
unpin(70); pin(60); unpin(60);
* Low hit rate
— Some buffer may contains stale data

Buffer 0 1 p 3
Block Id 60 50 30 40
time read in 15 6 3 4

time unpinned 16 10 9 7

http://www.vanilladb.org/

The FIFO Strategy

e Chooses the buffer that contains the least-
recently-read-in block

— Each buffer records the time a block is read in

* Unpinned buffers can be maintained in a priority
queue

— Finds the target unpinned buffer in O(1) time

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 6 4
time unpinned 8 10 9 7

http://www.vanilladb.org/

The FIFO Strategy

e Chooses the buffer that contains the least-
recently-read-in block

— Each buffer records the time a block is read in

* Unpinned buffers can be maintained in a priority
queue

— Finds the target unpinned buffer in O(1) time

Buffer 0 1 2 3

Block Id 60 50 70 40

time read in 11 6 12 4
time unpinned 8 10 9 7

http://www.vanilladb.org/

The FIFO Strategy

* Assumption: the older blocks are less likely to

be used in the future

e Valid?

* Not true for frequently used blocks
— E.g., catalog blocks

Buffer
Block Id

0
10

50

30

40

time read in

time unpinned

8

10

http://www.vanilladb.org/

The LRU Strategy

e Chooses the buffer that contains the least
recently used block

— Each buffer records the time the block is

unpinned
Buffer 0 1 2 3
Block Id 10 50 30 40
timeread in 1 6 3 4

time unpinned 10 9

http://www.vanilladb.org/

The LRU Strategy

e Choose the buffer that contains the least
recently used block

— Each buffer records the time the block is

unpinned
Buffer 0 1 2 3
Block Id 60 50 30 70
time read in 11 6 3 12

time unpinned 8 10 9 7

http://www.vanilladb.org/

The LRU Strategy

* Assumption: blocks that are not used in the near

past will unlikely be used in the near future

— Valid generally

— Avoids replacing commonly used pages
* But still not optimal for full table scan

* Most commercial systems use simple
enhancements to LRU

Buffer
Block Id

0
60

50

30

70

time read in

11

12

time unpinned

10

http://www.vanilladb.org/

LRU Variants

* In Oracle DBMS, the LRU queue has two logical
regions
— Cold region in front of the hot region

 Cold: LRU; hot: FIFO

* For full table scan
— Puts the just read page into the head (at LRU end)

Hot region Cold region
Buffers managed as FIFO Buffers managed as LRU
el T {1
MRU end LRU end
denotes dirty buffer

I
Figure 2: LRU chain management.

http://www.vanilladb.org/

The Clock Strategy

* Similar to Naive strategy, but always start
traversal from the previous replacement position

* Uses the unpinned buffers as evenly as possible
— With LRU flavor

* Easy to implement

Last replacement

Buffer
Block Id

time read in 1 6

time unpinned 8 10 9 7 \’
42

http://www.vanilladb.org/

The Clock Strategy

* Similar to Naive strategy, but always start
traversal from the last replacement position

— Buffer manager records the last replacement position

* Uses the unpinned buffers as evenly as possible
— With LRU flavor

* Easy to implement

Last replacement

Buffer 0 1 2 3

Block Id 10 50 60 70

time read in 1 6 11 12
time unpinned 8 10 9 7

http://www.vanilladb.org/

How many pages in buffer pool?

http://www.vanilladb.org/

Pool Size

* The set of all blocks that are currently
accessed by clients is called the working set

 |deally, the buffer pool should be larger than
the working set

— Otherwise, deadlock may happen

http://www.vanilladb.org/

Deadlock

 What if there is no candidate buffer when pinning?
— Buffer manager tells the client to wait

— Notifies (wakes up) the client to pin again when some
other unpins a block

 Deadlock

— Clients A and B both want to use two buffers and
there remain only two candidate buffers

— |f they both have got one buffer and attempt to get
another one, deadlock happens

— Circularly waiting the
others to unpin

http://www.vanilladb.org/

Deadlock

e How to detect deadlock?

— No buffer becomes available for an exceptionally
long time

— E.g., much longer than executing a query
e How to deal with deadlock?
— Forces at least one client to

1. First unpin all blocks it holds
2. Then re-pins these blocks one-by-one

http://www.vanilladb.org/

Waiting: An Example

A

e Buffer pool size: 10

* Block access from three clients:
— Client A: 1, 2, 3,
— Client B: 5, 6, 7,
— Client C: 9, 10, 11,

Buffer pool

123 /5 6 7 9 101

Waiting list

pin(12)

http://www.vanilladb.org/

Waiting: An Example

Buffer pool size: 10

Block access from three clients:
— Client A: 1, 2, 3,

— Client B: 5, 6, 7,

— Client C: 9, 10, 11,

Buffer pool

12 3 /5 6 /7 9 10112

Waiting list

A

B

A B C
pin(12)
pin(4)
pin(8)
wait for a _
MAX_TIME unpin(9)

http://www.vanilladb.org/

Waiting: An Example

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1, 2, 3, Pin(4)
_ ClientB: 5,6, 7, Pin(&)
— Client C: 9, 10, 11, unpin(9)
Buffer pool

123 /5 6 7

Waiting list
A B

http://www.vanilladb.org/

Waiting: An Example

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1, 2, 3, Pin(4)
_ ClientB: 5,6, 7, Pin(&)
— Client C: 9, 10, 11, | unpin(9)
Buffer pool unpin(10)

12 3 /5 6 /7 a0 1112

Waiting list
B

http://www.vanilladb.org/

Waiting: An Example

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1, 2, 3, Pin(4)
_ ClientB: 5,6, 7, Pin(&)
— Client C: 9, 10, 11, | unpin(9)
Buffer pool unpin(10)

123 /5 674

Waiting list
B

http://www.vanilladb.org/

Waiting: An Example

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1, 2, 3, Pin(4)
_ ClientB: 5,6, 7, Pin(&)
— Client C: 9, 10, 11, | unpin(9)
Buffer pool < unpin(10)

12 3 /5 /6 /7 a8 112

Waiting list

http://www.vanilladb.org/

Waiting: Deadlock Case

A

e Buffer pool size: 10

* Block access from three clients:
— Client A: 1, 2, 3,
— Client B: 5, 6, 7,
— Client C: 9, 10, 11,

Buffer pool

123 /5 6 7 9 101

Waiting list

pin(12)

http://www.vanilladb.org/

Waiting: Deadlock Case

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1, 2, 3, Pin(4)
— Client B:5, 6, 7, Pin(&)
— Client C: 9, 10, 11, pin(13)
Detected by A
Buffer pool el

12 13 15 6 7 | o |10 1 12 [

Waiting list
A B C

N

http://www.vanilladb.org/

Waiting: Deadlock Case

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1,2, 3, Pin(4)
_ ClientB: 5,6, 7, Pin(&)
— Client C: 9, 10, 11, pin(13)
Unpin all holding pages
Buffer pool then re-pin again 3
unpin(1~3)

s 6 |7 9 101l

Waiting list
B C

http://www.vanilladb.org/

Waiting: Deadlock Case

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)

— ClientA: 1,2, 3, Pin(4)

_ ClientB: 5,6, 7, Pin(&)

— Client C: 9, 10, 11, 1 pin(13)

Unpin all holding pages i
Buffer pool then re-pin again 3&—9%
unpin(1~3)

8 s | 6 |7 9 10112

Waiting list
A

http://www.vanilladb.org/

Waiting: Deadlock Case

A B C
e Buffer pool size: 10
 Block access from three clients: pin(12)

_ ClientA: 1,2, 3, pin(4)

— Client B: 5, 6, 7, Pin(8)

— Client C: 9, 10, 11, 1 pin(13)

Unpin all holding pages i
Buffer pool then re-pin again 3&—9%
repin(1~4)

i3 1 s |56 |70 d0luli2

Waiting list
A

http://www.vanilladb.org/

Waiting: Deadlock Case

A B C
e Buffer pool size: 10
* Block access from three clients: | pin(12)
— ClientA: 1,2, 3, pintd)
— Client B:5, 6,7, Pin(s)
Unpin all holding pages i
Buffer pool then re-pin agafgpm%) e
EIEEEEEREENESY | 0

Waiting list

Y

http://www.vanilladb.org/

Waiting: Deadlock Case

A B C
e Buffer pool size: 10
* Block access from three clients: pin(12)
— ClientA: 1,2, 3, Pin(4)
_ ClientB: 5,6, 7, Pin(&)
— Client C: 9, 10, 11, 1 pin(13)
Unpin all holding pages J
Buffer pool then re-pin agafgpin*(;M) e
ENEREN oin(5+8)
unpin(9~13)

Waiting list

N

http://www.vanilladb.org/

How about Self-Deadlock?

A client that pins more blocks than a pool can hold

Happens when
— The pool is too small

— The client is malicious (luckily, we write the clients
(RecordFile) ourselves)

How to handle this?

— A (fixed-sized) buffer manager has no choice but throwing
an exception

The pool should be large enough to at least hold the
working set of a single client

A good client should pin blocks sparingly
— Unpins a block immediately when done. When?
— Call close () afteriteratinga ResultSet in JDBC

v

http://www.vanilladb.org/

* Caching Logs

Outline

http://www.vanilladb.org/

Why logging?

http://www.vanilladb.org/

Transactions Revisited

Tx1

BEGIN TRANSACTION; R(r1)
R(r2)

mm) Scans/ =)
COMMIT TRANSACTION; record files \'jé:;;

http://www.vanilladb.org/

ACID

A database ensures the ACID properties of txs
Atomicity

— All operations in a transaction either succeed (transaction
commits) or fail (transaction rollback) together

Consistency

— After/before each transaction (which commits or rollback),
your data do not violate any rule you have set

Isolation

— Multiple transactions can run concurrently, but cannot
interfere with each other

Durability

— Once a transaction commits, any change it made lives in
DB permanently (unless overridden by other transactions)

N

http://www.vanilladb.org/

How?

http://www.vanilladb.org/

Naive C and |

 Observation: there is no tx that accesses data
across DBs

* To ensure C and |, each tx can simply lock the
entire DB it belongs
— Acquire lock at start
— Release lock when committed or rolled back

* Txs for different DBs can execute concurrently

http://www.vanilladb.org/

Naive Aand D

* D given buffers?

* Flush all dirty buffers of a tx before
committing the tx

— Return to DBMS client after tx commit

http://www.vanilladb.org/

Naive Aand D

* What if system crashes Tx1 ™3
and then recovers? Committing@

* To ensure A, DBMS needs committed@
to rollback uncommitted conprtne® 4,
txs (2 and 3) at sart-up
— Why 3? flushes due to swapping

* Problems:
— How to determine which txs to rollback?
— How to rollback all actions made by a tx?

http://www.vanilladb.org/

Naive Aand D

* |dea: Write-Ahead-Logging (WAL)

— Record a log of each modification made by a tx

* E.g., <SETVAL, <TX>, <BLK>, <OFFSET>, <VAL_TYPE>,
<OLD_VAL> >

* In memory to save |/Os (discussed later)

— To commit a tx,

1. Write all associated logs to a log file before flushing a
buffer

2. After flushing, write a <COMMIT, <TX>> log to the log file
— To swap a dirty buffer (in BufferMgr)

* All logs must be flushed before flushing a user block

http://www.vanilladb.org/

Naive Aand D

* Which txs to rollback?
— Observation: txs with COMMIT logs must have flushed all
their dirty blocks
— Ans: those without COMMIT logs in the log file

* How to rollback a tx?
— Observation: only 3 possibilities for each action on disk:

1. With log and block
2. With log, but without block

3. Without log and block

— Ans: simply undo actions that are logged to disk, flush all
affected blocks, and then writes a <ROLLBACK, <TX>> log

— Applicable to self-rollback made by a tx

http://www.vanilladb.org/

Naive Aand D

e Assumption of WAL: each block-write either
succeeds or fails entirely on a disk, despite
power failure
— l.e., no corrupted log block after crash

— Modern disks usually store enough power to finish
the ongoing sector-write upon power-off

— Valid if block size == sector size or a journaling file
system (e.g., EXT3/4, NTFS) is used

 Block/physical vs. metadata/logical journals

http://www.vanilladb.org/
http://en.wikipedia.org/wiki/Journaling_file_system

Caching Logs

* Like user blocks, the blocks of the log file are
cached

— Each tx operation is logged into memory
— Log blocks are flushed only on

* Tx commit
* Buffer swapping

* Avoids excessive |/Os

http://www.vanilladb.org/

Do we need a buffer pool for the log
blocks?

http://www.vanilladb.org/

Access Patterns: A Comparison

* User blocks
— Of multiple files
— Random reads, writes, and appends

— Concurrent access by multiple worker threads (each
thread per JDBC client)

* Log blocks
— Of a single log file (why not one file per tx?)
— Always appends, by multiple worker threads

— Always sequential backward reads, by a single
recovery thread at start-up

http://www.vanilladb.org/

Do we need a buffer pool for the log
blocks?

http://www.vanilladb.org/

No! Two Buffers Are Enough

* For the sequential backward reads
— The recovery thread “pins” the block being read
— There is only one recovery thread
— Exactly one buffer is needed

* For (sequential forward) appends
— All worker threads “pin” the tail block of the same file
— Exactly one buffer is needed

* DBMS needs an additional log manager

— To implement this specialized memory management
strategy for log blocks

http://www.vanilladb.org/

Example API

LogMgr

BasicLogRecord

<<final>> + LAST POS :int

<<final>> + logFile : String

<<synchronized>> + flush(Isn : long)

+ BasicLogRecord(pg : Page, pos : int)
+ LogMgr() + nextVal(type : Type) : Constant

<<synchronized>> + iterator() : lterator<BasicLogRecord>
<<synchronized>> + append(rec : Constant[]) : long

* Each log record has an unique identifier called

Log Sequence Number (LSN)
— Typically block ID + starting position

e flush (1lsn) flushes all log records with LSNs

no larger than 1sn

N

http://www.vanilladb.org/

Cache Management for Read

* Provides a log iterator that iterates the log
records backward from tail

* |Internally, the iterator allocates a page, which
always holds the block where the current log
record resides

* Optimal: more pages do not help in saving
1/Os

http://www.vanilladb.org/

Cache Management for Append

Permanently allocate a page, P, to hold the tail
block of the log file
When append (rec) is called:

1. If thereis noroomin P, then write the page P back
to disk and clear its contents

2. Add the new log record to P

When f1ush (1sn) is called:

1. Ifthat log record isin P, then write P to disk
2. Else, do nothing

Optimal: more pages do not help in saving I/Os

http://www.vanilladb.org/

Outline

* Log Manager in VanillaCore

http://www.vanilladb.org/

VanillaCore

Log Manager in VanillaCore

-~

Remote.JDBC (Client/Server)

Query Interface

Tx Planner { Parse
Algebra
Storage Interface
ConcurrencyIRecovery Metadata I Index I Record Sql/util
Log I Buffer
File

http://www.vanilladb.org/

LogMgr

* Instorage.log package

LogMgr

<<final>> + LAST_POS : int
<<final>> + LOG_File : String

+ LogMgr()

<<synchronized>> + flush(lsn : long)

<<synchronized>> + iterator() : lterator<Reversiblelterator>
<<synchronized>> + append(rec : Constant[]) : long

http://www.vanilladb.org/

LogMgr

Singleton

Constructed during system startup
—ViaVanillaDb.initFileAndLogMgr (dbname)
Obtained via VanillaDb.logMgr ()

The method append appends a log record to the
log file, and returns the record’s LSN as long
— No guarantee that the record will get written to disk

A client can force a specific log record, and all its
predecessors, to disk by calling £1ush

http://www.vanilladb.org/

LSNSs

e Recall that an LSN identifies a log record
— Typically block ID + starting position

* VanillaCore simplifies the LSN to be a block
number

— Recall: block ID = file name + block number

* All log records in a block are assigned the
same LSN, therefore flushed together

http://www.vanilladb.org/

BasicLogRecord

* An iterator of values in an log record

* The log manager only implements the memory
management strategy

— Does not understand the contents of the log records

— It is the recovery manager that defines the semantic
of a log record

BasicLogRecord

+ BasicLogRecord(pg : Page, pos : int)
+ nextVal(Type) : Constant

http://www.vanilladb.org/

Loglterator

* Aclient can read the records in the log file by
calling the method iteratorin LogMgr

— Returns a LogIterator instance

Loglterator

+ Loglterator(blk : Blockld)

+ hasNext() : boolean

+ next() : BasicLogRecord

+ hasPrevious() : boolean

+ previous() : BasicLogRecord
+ remove()

http://www.vanilladb.org/

Loglterator

* Calling next returns the next
BasicLogRecord in reverse order from tail

* This is how the recovery manager wants to see
the logs

block 0 block 1 block 2

rl1|r2 r3 r4 r5 réo r7:

Log File

http://www.vanilladb.org/

Using LogMgr

VanillaDb.initFileAndLogMgr("studentdb");

LogMgr logmgr = VanillaDb.logMgr();

long 1lsnl = logmgr.append(new Constant[] { new IntegerConstant(1),
new VarcharConstant("abc") });

long 1sn2 = logmgr.append(new Constant[] { new IntegerConstant(2),
new VarcharConstant("kri") });

long 1sn3 = logmgr.append(new Constant[] { new IntegerConstant(3),
new VarcharConstant("net") });

logmgr.flush(1lsn3);

Iterator<BasicLogRecord> iter = logmgr.iterator();
while (iter.hasNext()) {
BasicLogRecord rec = iter.next();

Constant cl = rec.nextVal(Type.INTEGER); Output:

Constant c2 = rec.nextVal(Type.VARCHAR); [3, net]

System.out.println("[" + c1 + ", " + c2 + "]"); [2, kri]
} [1, abc]

N

http://www.vanilladb.org/

Outline

e Buffer Manager in VanillaCore

http://www.vanilladb.org/

Buffer Manager in VanillaCore

VanillaCore

Remote.JDBC (Client/Server)

Query Interface

o

Sql/Util

Tx Planner { Parse
Algebra
Storage Interface
Concu rrencyI Recovery Metadata Index Record
Log I Buffer
File

http://www.vanilladb.org/

ButferMgr

* Each transaction has its own Buf ferMgr

* Constructed while creating a transaction
— Via transactionMgr.newTransaction(...)
 Obtainedvia transaction.bufferMgr ()

BufferMgr : TransactionLifecycleListener

<<final>> # BUFFER_POOL_SIZE : int

+ BufferMgr()

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

<<synchronized>> + pin(blk : Blockld)

<<synchronized>> + pinNew(filename : String, fmtr : PageFormatter) : Buffer
<<synchronized>> + unpin(buffs : Buffer[])

+ flush()

+ flushAll()

+ available() : int

http://www.vanilladb.org/

ButferMgr

* ABufferMgr of a transaction takes care which
buffers are pinned by the transaction and make it
waiting when there is no available buffer

e flush () flushes each buffer modified by the
specified tx

e available () returns the number of buffers
holding unpinned buffers

http://www.vanilladb.org/

BufferPoolMgr

* ABufferPoolMgr is asingleton object and

it is hidden in buf fer package to the outside
world

* |t manages a buffer pool for all pages and

implements the clock buffer replacement
strategy

— The details of disk access is unknown to client

http://www.vanilladb.org/

Buffer

Wraps a page and stores Buffer
— |ID of the holding block
— Pin count
.« po . . ~ Buffer()
- MOd |f|ed |nf0 rmation <<synchronized>> + getVal(offset : int, type : Type) :
. . Constant
- LOg |nf0 rmation <<synchronized>> + setVal(offset : int, val :
Constant , txnum : long, Isn : long)
Supports WAL <<synchronized>> + block() : Blockld

<<synchronized>> ~ flush()

— setVal () requires an LSN <<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

* Must be preceded by <<synchronized>> ~ isPinned() : boolean
LogMgr.append () <<synchronized>> ~ isModifiedBy(txNum : long) :
boolean
— flush () ca lls <<synchronized>> ~ assignToBlock(b : Blockld)

<<synchronized>> ~ assignToNew (filename : String,
fmtr : PageFormatter)

LogMgr.flush (maxLsn)

* Called by Buf ferMgr upon
swapping

v

http://www.vanilladb.org/

PageFormatter

* The pinNew (fmtr) method

of Buf ferMgr appends a new
block to a file

* PageFormatter initializes
the block

— To be extended in packages
(storage.record and

storage.index.btree)where the

semantics of records are defined

class ZeroIntFormatter implements PageFormatter {

public void format(Page p) {

Constant zero = new IntegerConstant(9);

int recsize = Page.size(zero);
for (int i =

p.setVal(i, zero);

<<interface>>
PageFormatter

+ format(p : Page)

O; 1 + recsize <= Page.BLOCK SIZE; 1 += recsize)

Y

http://www.vanilladb.org/

Using the Buffer Manager

* Reading value from a buffer

// Initialize VanillaDB ...

Transaction tx =

VanillaDb. txMgr().newTransaction(Connection. TRANSACTION SERIALIZABLE,

false);
BufferMgr bufferMgr = tx.bufferMgr();

BlockId blk new BlockId("student.tbl", 0);
Buffer buff = bufferMgr.pin(blk);

Type snameType = Type.VARCHAR(20);

Constant sname = buff.getVal(46, snameType);

System.out.println(sname);

bufferMgr.unpin(buff);

http://www.vanilladb.org/

Using the Buffer Manager

// Initialize VanillaDB ...

Transaction tx =
VanillaDb. txMgr().newTransaction(Connection. TRANSACTION SERIALIZABLE,

false);

BufferMgr bufferMgr = tx.bufferMgr();

LogMgr logMgr = VanillaDb.logMgr(); ° y

]_ong myTanum = 1; ertlng Value
BlockId blk = new BlockId("student.tbl", 0); |nt0 d bUffer

Buffer buff = bufferMgr.pin(blk);

Type snameType = Type.VARCHAR(20);

Constant sname = buff.getVal(46, snameType);

Constant[] logRec = new Constant[] { new BigIntConstant(myTxnNum), new
VarcharConstant("student.tbl"),

new BigIntConstant(blk.number()), new IntegerConstant(46), sname };

long 1sn = logMgr.append(logRec);

buff.setVal(46, new VarcharConstant("kay").castTo(snameType), myTxnNum,
1sn);

bufferMgr.unpin(buff);

// logMgr.flush(lsn) is called first by buff

// [WAL] when buff.flush() is called due to swapping or tx commit,
98‘\"

http://www.vanilladb.org/

You Have Assignment!

http://www.vanilladb.org/

Assignment: Optimizing File &
Buffer Management

The current File and Buffer Manager of VanillaCore is slow
— Mainly due to the synchronization for thread-safety

Optimize them and show performance gains!

We provide you a basic implementation of these modules
which have bad performance

— You need to modify them to reach higher throughput or lower
latency in the workload of our benchmark

You need to come out at least one optimization for each
module

— storage.file

— storage.buffer

http://www.vanilladb.org/

Assignment: Optimizing File &
Buffer Management

* Use the micro-benchmark we provided to
compare performance between the basic and
your implementation

http://www.vanilladb.org/

Hint

* Critical sections are usually used to protect some
shared resource

— Reducing the size of critical sections usually makes
transaction have less chance to block each other

— Some kinds of transactions will be stalled during execution
due to some critical sections, even if they do not need to
use those resource

http://www.vanilladb.org/

References

W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N.

MacNaughton, The oracle universal server buffer, VLDB,
1997.

M. Cyran., Oracle Database Concepts, 10g Release 2
(10.2), 2005.

Edward Sciore., Database Design and Implementation,
chapter 13.

Hellerstein, J. M., Stonebraker, M., and Hamilton, J.
Architecture of a database system. Foundations and
Trends in Databases 1, 2, 2007.

Hussein M. Abdel-Wahab, CS 471 — Operating Systems
Slides, http://www.cs.odu.edu/~cs471w/

http://www.vanilladb.org/

