Record Management

vanilladb.org

http://www.vanilladb.org/

Outline

* Overview
* Design Considerations for Record Manager
* The VanillaCore Record Manager

http://www.vanilladb.org/

VanillaCore

-~

Remote.JDBC (Client/Server) J { Server
Query Interface
Tx Planner { Parse }

Algebra

Storage Interface

ConcurrencyIRecovery Metadata I Index Record Sql/util

Log I Buffer

File

http://www.vanilladb.org/

Data Access Layers

RecordFileA RecordFileB
RecordPage RecordPage
r8 r9 r9 r10
/
BufferMgr /
Bu fferv Buffer Buffer /
\ \
Page vy Page \ Pag&
FileMgr / \
e
/ \
FileA e FileB \
Blockl BIock2' Blockl BIOCI&
r8 r9 r9 r10

http://www.vanilladb.org/

Record Management

e Main interface: RecordFile

— An iterator of records in a file

— One instance per TableScan
* ViaVanillaDb.catalogMgr () .
getTableInfo (tblName, tx) .open ()

— Thread local

http://www.vanilladb.org/

Responsibilities of RecordFile

e To decide how records are stored in a file
* To decide which block to pin

— To save the cost of buffer access

* To work with the recovery and concurrency
managers
— To ensure tx ACID

— Discussed later

http://www.vanilladb.org/

Logical Schema vs. Physical Schema

* Record manager converts (logical) schema to
physical schema

blog-posts

33981 ’ 2009/10/31 729
33982 3 2012/11/15 730
41770 5 2012/10/20 736
45896 : 2012/10/31 729
50633 . 2013/01/15 25

55868 . 2013/8/21 199

record

file
i Head

§ 33981 . 2009/10/31

3 729 33982 i 2012/11

block 0

,,,

http://www.vanilladb.org/

Design Considerations for Physical

Schema
Should all records of a table be stored in the
same file?

Should a record be placed entirely within one
block?

Should all fields of a record to be stored next
to each other?

Should a field be represented as a fixed
number of bytes?

How to manage free space?

http://www.vanilladb.org/

Outline

* Design Considerations for Record Manager

http://www.vanilladb.org/

Should all records of a table be stored
in the same file?

http://www.vanilladb.org/

Homogeneous vs. Heterogeneous Files

* Afileis homogeneous if all of its records come
from the same table

— Makes single-table queries easy to answer

* Allow heterogeneous files or not?

http://www.vanilladb.org/

Tradeoff: Efficiency vs. Flexibility

* Query: SELECT s-name FROM students,
departments WHERE d-id = major-id
* Homogeneous file

— The disk drive has to seek back and forth between
the blocks of two files

departments

1joe 102015 § 2 kay 20 2013 I 4 rob 20 2011 ' 5tom 10 2013

__

students

http://www.vanilladb.org/

Tradeoff: Efficiency vs. Flexibility

* Query: SELECT s-name FROM students,
departments WHERE d-id = major-id

* Nonhomogeneous file

— Stores the students and departments records in
the same file

* Records are clustered on department id
— Requires fewer block accesses to answer this join
guery

block 0 block 1

dept-students

http://www.vanilladb.org/

Homogeneous vs. Nonhomogeneous
Files

* Nonhomogeneous file

— Pros

 Clustering improves the efficiency of queries that join
the clustered tables

— Cons
» Single-table queries become less efficient

 Join queries on non-clustered field will also be less
efficient

* Suits only for schemas with hierarchy

http://www.vanilladb.org/

Should each record be placed entirely
within one block?

http://www.vanilladb.org/

Spanned vs. Unspanned Records

* A spanned record is a record whose values

span two or more blocks

block O block 1

=== __.'____ ______

|r1!r2I r3 r4a r4b r5]l

Record File

block 0 block 1
———r——'r——— _________ 1
] rl ! r2 ' r3 | r4 [rS !

spanned

unspanned

http://www.vanilladb.org/

Spanned vs. Unspanned Records

e Spanned record

— Pros

* No disk space is wasted

* Record size is not limited by block size
— Cons

* Reading one record may require multiple blocks access
and reconstruction

http://www.vanilladb.org/

Is each field in a record represented as
a fixed number of bytes?

http://www.vanilladb.org/

Fixed-Length vs. Variable-Length Fields

* Field types supported by SQL
— int, varchar(n), text, etc.

* Most of types are naturally fixed-length
— All numeric and data/time types

* A fixed-length field representation uses the same
number of bytes to hold each value of the field

— Integer can be stored as 4-bytes binary value

 How about those fields with variable-length types?
— varchar(n),clob(n), etc.

v

http://www.vanilladb.org/

Fixed-Length vs. Variable-Length Fields

* Consider a field “d-name” defined as type
varchar(20) using the variable-length
representation

* Modifying this field may require rearrange
other records

- — — — — — e —— — —— — —— — — — —

I I
10 math I| 20 computer-science | 30 earth-science |
_____ e _ _ _J - ————_

http://www.vanilladb.org/

Storing Variable-Length Fields

* Three different ways to store a varchar(n)

— VariabIe—Iength representation

- — — — — e — e

— ndexed representation, which stores the string
value in a separate location

r—-———™"———T 7 — r—— 1 — - = = |— - - — = |
10 0 20 4 : 30 11 | math [compsci | earthsci |

0 4 11

— Fixed-length representation, which allocates same
amount of space for this field in each records

- - - - - = o~ e S

http://www.vanilladb.org/

Pros & Cons

e Variable-length representation
— Space-efficient
— Record rearrangement is possible
* |Indexed representation
— Space-efficient (although with overhead of index)
— Extra index access for each record read/write
— Suits for text, clob(n)

* Fixed-length representation
— Easy implementation of random access
— Wastes space

http://www.vanilladb.org/

Should all fields of a record to be
stored next to each other?

http://www.vanilladb.org/

Column-Store vs. Row-Store

Row-oriented store

— Row-by-row sequentially on disk

— (s-1d, s—name,major-1id, grad—year)

* How about stormg the values of a single column
contiguously on disk?
 Sorted by s-id

______,_____________________—___________________‘

_______l_____________a_________ —_—e—— — ———— — — — — ———————

http://www.vanilladb.org/

Pros & Cons

* Row-oriented store
— Accessing a single row is more efficiently
— Write-optimized
— For OLTP workloads
* Column-oriented store
— Efficient column read

— Efficient column calculation (e.g., group by and
aggregation)

— Better comparison
— For OLAP workloads

http://www.vanilladb.org/

Design Considerations for Record
Manager

 How to choose a proper record file structure?

e Several factors that should be taken into
account

— Workload
— Supported SQL types
— Schema

http://www.vanilladb.org/

Implementing a File of Records

* A straightforward implementation
— Homogeneous files
— Unspanned records
— Fixed-length records
— Row-oriented store

* Treats each file as a sequence of blocks and
treats each block as an array of records

— We call such a block a record page

http://www.vanilladb.org/

Record Page

* Divides a block into slots, where each slot is
large enough to hold a record plus one
additional integer

— This integer is a flag that denotes the slot usage
— 0 means “empty” and 1 means “in use”

[slotO][slotl][slot2][slot3]

http://www.vanilladb.org/

Table Information

e The table information stores
— The record length

— The name, type, length, and offset of each field of
a record
* The table information allows the record

manager to determine where values are
located within the block

http://www.vanilladb.org/

Table Information

e Table information of students table

— Record length: 76 bytes students(s-id:int,

s—name:varchar (20),

— Fields information: major-id:int,
grad-year:long)

Field Name | Type Max Size (in byte) | Offset

s—1id int 4 0

s—name varchar (20)| 60 4

major—-id int 4 64

grad-year | long 8 68

slot 0 slot 1 slot 49

11 joe 10205 f 0| 2] kay 2002003 . f1|4, rob izo 2011

0 4 I8 68 72 I 3920 I 4000

The position s-id field of record in slot nisn x (76 + 4) + 4 \’

http://www.vanilladb.org/

 To insert a new record

Accessing The Record Page

— The record manager finds a slot with empty flag

— Updates the flag as in use

— Returns the slot number

— If all flag values are “1”, then the block is full

slot 1

10

2015 J 0| 2,

68 72

kay

T
| 20 | 2013

2011

4000

http://www.vanilladb.org/

Accessing The Record Page

e To delete the value of the record in slot k

— The record manager simply sets the flat at that
slot to 0 as empty

* To modify a field value of the record in slot k

— The record manager determines the location of
that field, and writes the value to that location

* Each record in a page has an ID. When the
records are fixed-length, the ID can be its slot
number

http://www.vanilladb.org/

Implementing Variable-Length Fields

 What are the implementation changes when
we want to support variable-length fields?

— The field offsets in a record are no longer fixed

— The records of same table can have different
lengths

* The record position cannot be calculated by multiplying
its slot number by slot size

* Modifying a field value can cause a record’s length to
change

http://www.vanilladb.org/

Implementing Variable-Length Fields

* |f the record’s length changes
— We need to shift the records after modified record
— The shifted records may spill out of the block
* Move to overflow block

 The original block and overflow block form a single
large record page

slot 0 slot 1 slot 2

1 (1 joe:lO 2015 § 1 (2 | kay §20] 2013 | 1 | 4 : rob | 20 | 2011

Modify the s-name of second record in original block

\ 4

1|1 |joe !0} 2015 f2] 2 | Michael Ralph Stonebraker | 20 | 2013

slot 2 %_

1| 4 rob!l20! 2011

slot 0 slot 1

http://www.vanilladb.org/

Implementing Variable-Length Fields

e How to delete a record?

— Only set the flag to empty

e Record size is variable, this empty space may not be re-
use

[record 0 11 record 1 110 record 2]

! |
1{1]joel10! 201512 :kayIZO 2013 | 1 | 4 | rob | 20| 2011

[record 0] [record 2]

! I
1| 1] joel!10; 2015 0 | 2 :kaylZO 2013 4 1 | 4 | rob | 20| 2011

— Reclaim the empty space
e Dissociate the record’s ID from slot

[record 0 11 record 2]

i I !
1 (1] joe I 10! 2015 g 1 | 4 | rob | 20 2011
L |

http://www.vanilladb.org/

Implementing Variable-Length Fields

* The record manager cannot random access a
record in a page, because it has no position
information

— We need a different page layout

http://www.vanilladb.org/

Implementing Variable-Length Fields

 There is a header at the beginning of each record
page containing following information
— Number of records
— The end of free space in that page
— IDs and pointers to each record and size of each

record
* The records are placed at the other end of page
Block Header Records
iijceation # Entries . Free Space ---

End of Free Space

http://www.vanilladb.org/

Implementing Variable-Length Fields

* When a modification on a record requires
more spaces, the record manager will find a
continuous free space within that page

* Rearranging the record page when record’s
length changes can eliminate the
fragmentation

— VACUUM command

http://www.vanilladb.org/

Managing the Free Space Within a

Record Fi

le

* Each record page in a file has different amount
of free spaces

— The fixed-length field implementation

[

record 0] [

record 2

1

! J
joe |10} 2015 L0 | 2 | kay 120 | 2013 | 1 | 4 | rob
| L

20 | 2011

— The variable-length field implementation wit

N id

#re F pace point [recor d?2 1l recor d0]

——————————————————————————————— 7 T

2 Free Space 41 rob | 20| 2011 joe 110 | 2015
-

http://www.vanilladb.org/

M1: Chaining

When the client wants to insert a new record, the

record manager needs to find continuous unused
bytes for it

How to manage the free space within a file?
Chaining the free spaces

header block block 1 block 2

Record File

For variable-length records, it may access many
blocks to find out a large enough free space

http://www.vanilladb.org/

M?2: Meta-Pages

* Using special pages to track the usage of
record pages

— Allocates one free space page for N record pages

— Free space page uses one byte to track the size of
unused space size for each following page

Free space page 1 block 1 block 2 block 3

- T

I N St N) I I e e
\ I Hu Record File

— I\/Iicrogoft SQL Server approach

http://www.vanilladb.org/

M3: Meta-File

* Using additional file to track the location and
size all free spaces

— PostgreSQL approach

R
I Record File |

http://www.vanilladb.org/

Outline

The VanillaCore Record Manager
— How records are stored?
— Which blocks to pin

— Working with the recovery and concurrency
manager to ensure tx ACID

http://www.vanilladb.org/

Responsibilities of RecordFile

 To decide how records are stored in a file

* To decide which block to pin (to save the cost
of buffer access)

* To work with the recovery and concurrency
manager to ensure tx ACID

http://www.vanilladb.org/

Outline

* Overview
* Design Considerations for Record Manager

* The VanillaCore Record Manager
— How records are stored?
— Which blocks to pin?

— Working with the recovery and concurrency
manager to ensure tx ACID

N

http://www.vanilladb.org/

How Records are Stored?

* Choices:
— Un-spanned record
— Homogeneous file
— Row-oriented store
— Fixed-length field
— Chained free space: O(1) search time

* RecordPage: lays out records in a page
e 'ileHeaderPage: header of free-space chain

header block block 1 block 2

T a0 s I ¢ e
oiner__! ' 2 | e ____k____l___l

Record File

http://www.vanilladb.org/

Responsibilities of RecordFile

e To decide which block to pin (to save the cost
of buffer access)

— At most two pages: RecordPage and
F1leHeaderPage

 To decide how records are stored in a file

* To work with the recovery and concurrency
manager to ensure tx ACID

http://www.vanilladb.org/

Using the Table Information

The VanillaCore record manager needs to know the

table information

The classes storage.metadata.TableInfo and

sgl . Schema manage the table information
The record manager can get this information from

metadata manager

Schema : Serializable

Tablelnfo

+ Tablelnfo(tblname : String, schema : Schema)
+ fileName() : String

+ tableName() : String

+ schema() : Schema

+ open(tx : Transaction) : RecordFile

+ Schema()

+ addField(fldName : String, type : Type)
+ add(fldName : String, sch : Schema)

+ addAll(sch : Schema)

+ fields() : SortedSet<String>

+ hasField(fldName : String) : boolean

+ type(fldname : String) : Type

+ toString() : String

+ equals(obj : Object) : boolean

+ hashCode() : int

http://www.vanilladb.org/

Using the Table Information

 Sample code of constructing table information

Schema sch = new Schema();

sch.addField("s-id", Type.INTEGER);
sch.addField("s-name", Type.VARCHAR(20));
sch.addField("major-id", Type.INTEGER);
sch.addField("grad-year", Type.BIGINT);

TableInfo ti

new TableInfo("students", sch);

http://www.vanilladb.org/

Managing the Records in a Page

* Implements the record page as following layout

— Minimal slot size: 4+4+8 bytes (flag, pointer to next
deleted slot)

[recor do] [record 2]

| !
1 (1 }joe!l10! 2015 § O | unknown value 1|4 ,rob|20; 2011 J O unknown value |
| . |

A

* The RecordPage manages the records within a
page

e The RecordId denotes the identifier of each
record

http://www.vanilladb.org/

RecordId

e |dentifier of a record

— idis equal to slot number because of fixed-length
implementation

Recordld

+ Recordld(blk : Blockld, id : int)
+ block() : Blockid

+1id() : int

+ equals(obj : Object) : boolean
+ toString() : String

+ hashCode() : int

http://www.vanilladb.org/

RecordPage

e Extends the interface Record

* Manages a buffer for the currently opened data
block

e Calls the concurrency control manager to ensure
the isolation property

http://www.vanilladb.org/

RecordPage

RecordPage : Record

+ offsetMap(sch: Schema) : Map<String, Integer>

+ recordSize(sch: Schema) : int
+ slotSize(sch: Schema) : int

+ RecordPage(blk : Blockld, ti : TableInfo , tx : Transaction,
doLog : boolean)

+ close()

+ next() : boolean

+ getVal(fldName : String) : Constant

+ setVal(fldName : String, val : Constant)
+ delete(nextDeletedSlot : Recordld)

+ insertintoNextEmptySlot() : boolean

+ insertintoDeletedSlot(): Recordld

+ moveTold(id : int)

+ currentld() : int

+ currentBIk() : Blockld

http://www.vanilladb.org/

Accessing Records in a Record Page

 Sample code of using a record page

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION _SERIALIZABLE, false);

TableInfo ti = VanillaDb.catalogMgr().getTableInfo(tableName, tx);

String fileName = ti.fileName();

RecordId lastDeletedRid = ...;

BlockId blk = new BlockId(fileName, 235);

RecordPage rp = new RecordPage(blk, ti, tx, true); // pin the buffer

// Partl: read and delete
while (rp.next()) {
Constant sid = rp.getVal("s-id");
if (sid.equals(new IntegerConstant(50))) {
rp.delete(lastDeletedRid);
lastDeletedRid = new RecordId(rp.currentBlk(), rp.currentId());

}

// Part 2: insert into empty slot if exist
rp.moveTold(-1); // point before the first record
boolean hasFreeSlot = rp.insertIntoNextEmptySlot();
if (hasFreeSlot) {

rp.setVal("s-id", new IntegerConstant(65));

}
rp.close(); // unpin the buffer
tx.commit();
54

http://www.vanilladb.org/

Formatting Record Page

* Arecord page has a specific structure

— Partitioned into slot, with the value of the first
integer in each slot as usage flag

* Formatting the record page before it can be
used

* The class RecordFormatter performs this
service, via its method format

RecordFormatter : PageFormatter

+ RecordFormatter(ti : Tablelnfo)
+ format(page : Page)

http://www.vanilladb.org/

File Header

* The class FileHeaderPage manages the
header
— The pointer to the deleted slot chain
— The tail slot

FileHeaderPage

+ FileHeaderPage(fileName : String, tx : Transaction)
+ close()

+ hasDataRecords() : boolean

+ hasDeletedSlots() : boolean

+ getLastDeletedSlot() : Recordld

+ getTailSlot() : Recordld

+ setLastDeletedSlot(rid : Recordld)

+ setTailSlot(rid : Recordid)

http://www.vanilladb.org/

Managing the Records in a File

* Arecord file consists of several record pages

— Data access APl is similar to record pages

* Record file manages the file properties
— File header, file size
— Appends new block at the end of file

— Maintains the current position in a file and uses
the data manipulation methods of the record page

header block bIock 1 block 2 block 3

C T Theemacet 1T A T T - T .-

Ll Tai IFrse,Space' | r0 |, rl | r2 |]| r0 |: | r2 113} r0 | rl | r2 | r3 |
ol — T L e — e L L) L __ L __1

Record File

http://www.vanilladb.org/

RecordFile

* Manages a file of records and calls the
concurrency manager to ensure isolation
property

* Provides methods for iterating through the
records and accessing their contents

http://www.vanilladb.org/

RecordFile

RecordFile: Record

+ formatFileHeader(fileName : String, tx : Transaction)

+ RecordFile(ti : Tablelnfo , tx : Transaction, doLog :
boolean)

+ close()

+ beforeFirst()

+ next() : boolean

+ getVal(fldName : String) : Constant

+ setVal(fldName : String, val : Constant)
+ delete()

+ insert()

+ moveToRecordld(rid : RecordId)

+ currentRecordld() : Recordld

+ fileSize() : long

http://www.vanilladb.org/

Accessing Records in a Record File

* Sample code of using a record file

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = ...;

RecordFile rf = ti.open(tx, true);

rf.beforeFirst();

// Part 1: reads records and delete records
while (rf.next())
if (rf.getVal("s-id").equals(new IntegerConstant(50)))
rf.delete();
rf.close();

// Part 2: insert new record

rf = ti.open(tx, true);

for (int id = @; id < 100; id++) {
rf.insert();
rf.setVal("s-id", new IntegerConstant(id));
rf.setVal("s-name", new VarcharConstant("student" + id));
rf.setVal("major-id", new IntegerConstant((id % 3 + 1) * 10));
rf.setVal("grad-year", new BigIntConstant(2016));

Caution:

When inserting a new record, all the fields should have inserted value
Otherwise, the user might read some unpredictable value \,

}

rf.close();

60

http://www.vanilladb.org/

Recap of Data Access Layers

RecordFileA RecordFileB
RecordPage RecordPage
r8 r9 r9 r10
/
BufferMgr /
Bu fferv Buffer Buffer /

\ \

Page vy Page \ Pag&
FileMgr / \

d \
FileA e FileB \

Blockl BIock2' Blockl BIOCI&
r8 r9 r9 r10

http://www.vanilladb.org/

Outline

* Overview
* Design Considerations for Record Manager
* The VanillaCore Record Manager

— How records are stored?
— Which blocks to pin?

— Working with the recovery and concurrency
manager to ensure tx ACID

N

http://www.vanilladb.org/

Which Block to Pin?

* Each RecordFile instance pins only two
pages:
— RecordPage corresponding to the current
position
— Fi1leHeaderPage
* Unpinupon close ()

— This is why a JDBC user should close a
ResultSet as soon as possible

http://www.vanilladb.org/

Outline

— Working with the recovery and concurrency
manager to ensure tx ACID

http://www.vanilladb.org/

Tx Support

 Cand | by working with ConcurrencyManager

— All read/write from/to files and blocks must obtain
appropriate locks first via
concurrencyMgr.read/modifyXxx ()

* A and D by working with RecoveryManager

— All set values are logged via
recoveryMgr.logXxx ()

— By virtue of WAL implementation in memory-
management layer

http://www.vanilladb.org/

References

Database page layout of PostgreSQL.
http://www.postgresql.org/docs/8.0/static/stora
ge-page-layout.html

Microsoft SQL Server page structure.
http://msdn.microsoft.com/en-
us/library/ms190969(v=sql.105).aspx

Database Design and Implementation, chapter 15.
Edward Sciore.

Database system concepts 6/e, chapter 10.
Silberschatz.

N

http://www.vanilladb.org/
http://www.postgresql.org/docs/8.0/static/storage-page-layout.html
http://msdn.microsoft.com/en-us/library/ms190969(v=sql.105).aspx

