
Consensus

vanilladb.org

http://www.vanilladb.org/


Consensus

• Uses:
– bebBroadcast
– PerfectFailureDetection

• Properties
– Termination

• Every correct process eventually decides some value.

– Validity
• If a process decides v, then v was proposed by some process.

– Integrity
• No process decides twice.

– Agreement
• No two correct process decide differently.

2

http://www.vanilladb.org/


How?

3



Flooding Consensus

• A consensus instance requires two rounds:
– Round 1

• Every process proposes a value and broadcast to others

• A consensus decision is reached when a process knows it has 
seen all proposed values that will be considered by correct 
processes for possible decision

• The decision is made in a deterministic function

• It’s ok to have many processes make the decision since the 
decisions should be all the same

– Round 2
• The process that made the decision broadcasts the decision 

to all

4

http://www.vanilladb.org/


Flooding Consensus

5

p1

p4

p3

p2

Propose(3)

Propose(2)

Propose(5)

Propose(7)
(3, 5, 7)

(3, 5, 7)

Decide(2 = min(2, 3, 5, 7))

Decide(2)

Decide(2)

Can decide upon arrival of all 
proposals of processes in 
current view 

Cannot decide, starts 
another round

Crash detected

http://www.vanilladb.org/


Flooding Consensus

6

Arrival of all proposals of 
processes in current view 

http://www.vanilladb.org/


Flooding Consensus

7

private void handleDecided(DecidedEvent event) {
// Counts the number os Decided messages received and reinitiates the
// algorithm
if ((++count_decided >= correctSize()) && (decided != null)) {

init();
return;

}

if (decided != null)
return;

SampleProcess p_i = correct.getProcess((SocketAddress) event.source);
if (!p_i.isCorrect())

return;

decided = (Proposal) event.getMessage().popObject();

try {
ConsensusDecide ev = new ConsensusDecide(event.getChannel(),

Direction.UP, this);
ev.decision = decided;
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}

try {
DecidedEvent ev = new DecidedEvent(event.getChannel(),

Direction.DOWN, this);
ev.getMessage().pushObject(decided);
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}

round = 0;
}

private void decide(Channel channel) {
int i;

debugAll("decide");

if (decided != null)
return;

for (i = 0; i < correct.getSize(); i++) {
SampleProcess p = correct.getProcess(i);
if ((p != null) && p.isCorrect()

&& !correct_this_round[round].contains(p))
return;

}

if (correct_this_round[round].equals(correct_this_round[round - 1])) {

for (Proposal proposal : proposal_set[round])
if (decided == null)

decided = proposal;
else if (proposal.compareTo(decided) < 0)

decided = proposal;

try {
ConsensusDecide ev = new ConsensusDecide(channel, Direction.UP,

this);
ev.decision = (Proposal) decided;
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}

try {
DecidedEvent ev = new DecidedEvent(channel, Direction.DOWN,

this);
ev.getMessage().pushObject(decided);
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}
} else {

round++;
proposal_set[round].addAll(proposal_set[round - 1]);
try {

MySetEvent ev = new MySetEvent(channel, Direction.DOWN, this);
ev.getMessage().pushObject(proposal_set[round]);
ev.getMessage().pushInt(round);
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}

count_decided = 0;
}

}

private void handleMySet(MySetEvent event) {
SampleProcess p_i = correct.getProcess((SocketAddress) event.source);
int r = event.getMessage().popInt();
HashSet<Proposal> set = (HashSet<Proposal>) event.getMessage()

.popObject();
correct_this_round[r].add(p_i);
proposal_set[r].addAll(set);
decide(event.getChannel());

}

private void handleConsensusPropose(ConsensusPropose propose) {
proposal_set[round].add(propose.value);
try {

MySetEvent ev = new MySetEvent(propose.getChannel(),
Direction.DOWN, this);

ev.getMessage().pushObject(proposal_set[round]);
ev.getMessage().pushInt(round);
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}

decide(propose.getChannel());
}

http://www.vanilladb.org/


Alternatives?

• Processes could fail during rounds 1 and 2
• Why not using reliable broadcast?
• All correct processes should receive all the 

proposals
– Every process decides (deterministically) the same
– No need for round 2 any more!

• However, if any process fails, the rest need to 
relay the proposals

• Why nor just relay decision?
– This is exactly the purpose of the regular round 2

8

http://www.vanilladb.org/


Performance of Flooding Consensus

• Regular:
– 2 steps

• Alternative
– Each failure causes at most one additional 

communication step in round 1
– Best case (no failures)

• Single communication step in round 1

– Worst case (failure in every step)
• N (the amount of processes) steps

• Each step requires O(N2) messages to be 
exchanged

9

http://www.vanilladb.org/


Total Order Broadcast

• Total order broadcast is a reliable broadcast 
communication abstraction which ensures 
that all processes deliver messages in the 
same order

10

http://www.vanilladb.org/


Total Order Broadcast

• Uses:
– ReliableBroadcast
– RegularConsensus

• Properties
– Total order

• Let m1 and m2 be any two messages. Let pi and pj be any two 
correct processes that deliver m1 and m2. If pi delivers m1 before 
m2, then pj delivers m1 before m2.

– No duplication
– No creation
– Agreement

• If a message m is delivered by some correct processes, then m is 
eventually delivered by every correct process.

11

http://www.vanilladb.org/


How?

12



Total Order Broadcast

• The two actions executes concurrently:

– Processes broadcast messages with reliable 
broadcast

– Decide the order of messages with regular 
consensus

• The proposals are the messages broadcasted in the first 
action

13

http://www.vanilladb.org/


14

p1

p4

p3

p2

p1

p4

p3

p2

m1

m1, m2

m1

m1, m2

m2

m2

m2, m3

m2, m3

m3, m4

m3, m4

m3, m4

m3, m4

Broadcast(m1)

Broadcast(m2)

Broadcast(m3)

Broadcast(m4)

Deliver(m1) Deliver(m2) Deliver(m3) 
Deliver(m4)

Reliable Broadcast

Regular Consensus

http://www.vanilladb.org/


Total Order Broadcast

15

http://www.vanilladb.org/


Total Order Broadcast

16

public void handleConsensusDecide(ConsensusDecide e) {
Debug.print("TO: handle: " + e.getClass().getName());

LinkedList<ListElement> decided = deserialize(((OrderProposal) 
e.decision).bytes);

// The delivered list must be complemented with the msg in the 
decided

// list!
for (int i = 0; i < decided.size(); i++) {

if (!isDelivered((SocketAddress) decided.get(i).se.source,
decided.get(i).seq)) {

// if a msg that is in decided doesn't yet belong to delivered,
// add it!
delivered.add(decided.get(i));

}
}

// update unordered list by removing the messages that are in the
// delivered list
for (int j = 0; j < unordered.size(); j++) {

if (isDelivered((SocketAddress) unordered.get(j).se.source,
unordered.get(j).seq)) {

unordered.remove(j);
j--;

}
}

decided = sort(decided);

// deliver the messages in the decided list, which is already ordered!
for (int k = 0; k < decided.size(); k++) {

try {
decided.get(k).se.go();

} catch (AppiaEventException ex) {
System.out.println("[ConsensusUTOSession:handleDecide]"

+ ex.getMessage());
}

}
sn++;
wait = false;

}

public void handleSendableEventUP(SendableEvent e) {
Debug.print("TO: handle: " + e.getClass().getName() + " UP");

Message om = e.getMessage();
int seq = om.popInt();

// checks if the msg has already been delivered.
ListElement le;
if (!isDelivered((SocketAddress) e.source, seq)) {

le = new ListElement(e, seq);
unordered.add(le);

}

// let's see if we can start a new round!
if (unordered.size() != 0 && !wait) {

wait = true;
// sends our proposal to consensus protocol!
ConsensusPropose cp;
byte[] bytes = null;
try {

cp = new ConsensusPropose(channel, Direction.DOWN, this);

bytes = serialize(unordered);

OrderProposal op = new OrderProposal(bytes);
cp.value = op;

cp.go();
Debug.print("TO: handleUP: Proposta:");
for (int g = 0; g < unordered.size(); g++) {

Debug.print("source:" + unordered.get(g).se.source
+ " seq:" + unordered.get(g).seq);

}
Debug.print("TO: handleUP: Proposta feita!");

} catch (AppiaEventException ex) {
System.out.println("[ConsensusUTOSession:handleUP]"

+ ex.getMessage());
}

}

}

public void handleSendableEventDOWN(SendableEvent e) 
{

Message om = e.getMessage();
// inserting the global seq number of this msg
om.pushInt(seqNumber);

try {
e.go();

} catch (AppiaEventException ex) {

System.out.println("[ConsensusUTOSession:handleDOWN]"
+ ex.getMessage());

}

// increments the global seq number
seqNumber++;

}

http://www.vanilladb.org/


Performance

• Too slow (Regular consensus)

• Too many messages

• More cost if some processes fail

• High communication cost on WAN

• Every node has to propose

• Is there any other way to achieve total order 
broadcast?

17

http://www.vanilladb.org/


Total Order By Sequencer

• If a process wants to broadcast a message, it first 
sends the message to a distinguished sequencer

• The sequencer decides an order of message and 
broadcasts the messages with a sequence 
number

• If sequencer fails?
– Determine the next sequencer in a deterministic way.

• Uses:
– PerfectPointToPointLink
– PerfectFailureDetection
– ReliableBroadcast

18

http://www.vanilladb.org/


19

p1

p4

p3

p2

m1

m2

Buffer the message, wait for 
the message with sequence 

number “1” to deliver 

(1, m2) (2, m1)

Broadcast m2 with 
sequence number 1

Broadcast m1 with 
sequence number 2

http://www.vanilladb.org/


Pros and Cons of Sequencer

• Pros
– Easy to implement

– Fewer messages

– One communication round to decide the next ordered 
message

• Cons
– No load balancing, heavy load on the sequencer

– Single point of failure
• If the sequencer is failed, it takes time to change to a new 

sequencer

20

http://www.vanilladb.org/


Regular Consensus or Sequencer?

• Most enterprises choose the sequencer 
approach

– Node failure is not so often 

– Performance of sequencer approach is much 
better than the consensus one

21

http://www.vanilladb.org/

