
Total-Ordering

vanilladb.org

http://www.vanilladb.org/


Why Paxos?

• Flooding consensus algorithm spends too 
much time waiting for the last message in 
every round

– On WAN, this largely increases the response time

• Paxos: why not skip the late messages and 
make them insignificant to decision?

– Idea: consensus can be reached by a majority of 
nodes

2

http://www.vanilladb.org/


The Goal of Paxos

• In a Paxos run, the protocol should
– Ensure a proposed value is eventually chosen, and 

correct nodes can eventually learn the value

• More precisely, the protocol should meet the 
following safety requirements 
– If a node decides a value v, then v was proposed by 

some nodes.

– Only a single value is eventually chosen

– A node never learns that a value has been chosen 
unless it actually has been

3

http://www.vanilladb.org/


Roles in Paxos

• Client 
– The user that send the request to the server nodes

• Server, may play multiple roles:
– Proposer 

• Clients send requests to the proposer. 
• Proposer attempts to convince the Acceptors to agree on some value, and 

acting as a coordinator to move the protocol forward when conflicts occur. 

– Acceptor 
• The proposer sends proposals to the Acceptors. 
• The Acceptors vote to accept the proposals or not. 

– Learner
• Act as the replication factor for the protocol. 
• Once a client request is agreed by the acceptors, the learner executes the 

request and responses the result to the client. 

4

http://www.vanilladb.org/


System Architecture

5
Respond

Proposer

Acceptor Learner

Make consensus
Learner learns 

the value

Client

http://www.vanilladb.org/


Real World System Architecture

6

Learners

Learners

Learners

Acceptor & Learner

Also act as proposer

WAN

http://www.vanilladb.org/


Reach Consensus on Learners

• The goal:

– Reach consensus on learners

– All learners should learn the same value

• How can we achieve this?

– Have the proposer send the value to learners 
directly, and the learners learn the value when 
they receive any value? 

7

Proposer Learners

Learn V

http://www.vanilladb.org/


Reach Consensus on Learners

• No
– The proposer may propose multiple values
– Or, there may be multiple proposers
– The messages could be out of order

• Learners could learn different values from 
different proposers!

• To reach consensus on learners, proposers should 
communicate with acceptors and reach 
consensus on acceptors first
– Reaching consensus on acceptors implies consensus 

on learners

8

http://www.vanilladb.org/


Reach Consensus on Acceptors

• If an acceptor receives a proposal, it can 
accept (which means voting “yes”) the 
proposal.

• If a proposal with a value v is accepted by a 
majority of acceptors, the consensus on 
acceptors is reached, we say that the value v is 
chosen

9

http://www.vanilladb.org/


Why majority ?

• There must be at least one common acceptor 
in two majority sets

• The common acceptors can ensure that at 
most one value can be accepted by majority of 
acceptors

10

Chosen 
value

http://www.vanilladb.org/


Accept Phase

• We first consider the case with only one proposer. A 
proposer proposes a value, and acceptors accept the 
proposal

• If the proposer knows its proposal is chosen (accepted by a 
majority of acceptors), it can notify all the learners what 
value is chosen

• Note that acceptors do not know whether the value is 
chosen unless the proposer tells them

• However, the problem caused by multiple proposers still 
exists

11

Proposer Acceptor

Accept V

Accepted V

Learner

Learn V

http://www.vanilladb.org/


Multiple Proposers

• There may be multiple proposers. If more than one proposer 
propose at the same time, which one should be accepted by 
acceptors ?

• Can every acceptor only accept one proposal ?
– No, if there are three or more proposers, no proposals can be 

accepted by a majority of acceptors
– So the acceptors should accept more than one proposal

• Then how should an acceptor choose the proposal ?
– We assume that all proposals have their distinct number. How ?

• Each proposer’s own counter and its node id.

– Acceptors accept the highest-numbered proposal it has ever seen

• Then we get:
– P1. An acceptor must accept the first proposal that it receives

12

http://www.vanilladb.org/


Multiple Chosen Proposals

• Since acceptors can accept more than one proposal, multiple 
proposals may be chosen, but only one value should be 
chosen. How to solve this ?

• We can allow multiple proposals to be chosen, but we must 
guarantee that all the chosen proposals have the same value. 
By induction on the proposal number, it suffices to guarantee: 
– P2. If a proposal with value v is chosen, then every higher-

numbered proposal that is chosen has value v

13

Proposer Acceptor

Accept (1, V)
Accepted (1, V)

Learner

Learn (V)

Accept (2, V2)
Accepted (2, V2)
Learn (V2)

http://www.vanilladb.org/


How to guarantee P2 ?

• We now have P2, since a chosen value 
must be accepted by acceptors, we can 
guarantee P2 by guaranteeing P2a:

– P2a. If a proposal with value v is chosen, then 
every higher-numbered proposal accepted by 
any acceptor has value v

14

http://www.vanilladb.org/


How to guarantee P2a ?

• Since the proposal is proposed by proposers, 
we can guarantee P2a by guaranteeing P2b:

– P2b. If a proposal with value v is chosen, then 
every higher-numbered proposal issued by any 
proposer has value v.

15

http://www.vanilladb.org/


How to guarantee P2b ?

• If a value v is chosen, it must have been accepted by 
some set C consisting of a majority of acceptors

• Since any majority set S contains at least one member 
of C, we can conclude that a proposal numbered n has 
the chosen value v by ensuring P2c:
– P2c. For any v and n, if a proposal with value v and number 

n is issued, then there is a set S consisting of a majority of 
acceptors such that either 
• (a) no acceptor in S has accepted any proposal numbered less 

than n, 
• (b) v is the value of the highest-numbered proposal among all 

proposals numbered less than n accepted by the acceptors in S

• If we can guarantee P2c, by induction, every higher-
numbered proposals have value v. Then P2b is 
guaranteed, P2b implies P2a, and P2a implies P2

16

http://www.vanilladb.org/


How To Achieve P2c ?

• How to modify the behavior of proposer and acceptor?
– Before sending the accept message, proposers send a 

prepare message to a majority of acceptors to ask if there 
are already some proposals accepted by acceptors. If 
there’s any, propose the value of the highest-numbered 
proposal

• Can the acceptor accept any lower-numbered 
proposals after responding the proposer ?
– No, the new accepted proposal can’t be known by the 

proposer. So the acceptor should promise not to accept 
any lower-numbered proposals again

• Then we should modify P1 to P1a:
– P1a. An acceptor can accept a proposal numbered n iff it 

has not responded to a prepare request having a number 
greater than n

17

http://www.vanilladb.org/


The Example

• We use the notation 

– Promise(N, {R1, R2, …. RM}) where N is the 
proposal number, and {R1, R2, …. RM} is the 
set of responses from M acceptors. 

• Ri = [Accepted value, Proposal number]

• Ri = null if there is no accepted value.

18

Proposers Acceptors

Accept (N, V2)
Accepted (N, V2)

Learners

Learn (V)

Prepare (N)
Promise (N, {[V, 1], [V2, 2], null})

http://www.vanilladb.org/


Example of Prepare Phase

19

Proposers Acceptors

Prepare (1)
Promise (1, {null, null, null})
Accept (1, V)
Accepted (1, V)

Promise (2, {null, null})

Accept (2, V2)

Prepare (2)

Accept (1, V) // must ignore

Learner

Prepare (3)
Promise (3, {[V, 1], [V2, 2], null})
Accept (2, V2) // ignore

Accepted (2, V2)

Accept (3, V2)

Learn (V2)
Accepted (3, V2)

http://www.vanilladb.org/


Basic Paxos

20

http://www.vanilladb.org/


Details of P2c (1/2)

21

• Why is sending prepare message to a majority set 
of acceptors enough to know the chosen value?
– If a value v is chosen, it was accepted by a majority 

set C. By sending prepare message to any majority set 
of acceptors S, since S must contain at least one 
acceptor in C, so at least one acceptor knows v and it 
can tell the proposer.

• Why choosing the highest-numbered proposal ?
– If a proposal with number less than n is chosen, then 

proposal n has the value v. By induction, the highest-
numbered proposal must have the chosen value.

http://www.vanilladb.org/


Details of P2c (2/2)

22

• Why must the proposer propose the value 
responded by acceptors ?
– If there’s any value responded by one or some 

acceptors, the value is possible to be chosen or isn’t 
chosen, and we can’t be sure with only majority of 
responses. 

– For example, if there are three acceptors and 
proposer gets responses { v, null }, and the third 
acceptor’s response is unknown.
• If the last acceptor accepted v, then v is chosen ({v, null, v}). 

The proposer can only propose the value v.
• If the last doesn’t accept v, no value is chosen yet ({v, null, ?}). 

The proposer can propose v to reach consensus.

– Then the safety requirement “only one value is 
chosen” is reached.

http://www.vanilladb.org/


Three Phases of Paxos

• Prepare phase
– The proposer sends a prepare message with number n to 

acceptors to ask for promise that
• Never again to accept a proposal numbered less than n
• Response the highest-numbered proposal that it accepted

• Accept phase
– If the proposer gets a majority of acceptors’ promise, 

• It can decide the value v, where v is the value of highest numbered 
proposal among the responses, or is any value selected by the proposer if 
there are no reported proposals

• It sends the accept message with the value

– Else it can choose a higher proposal number and restart prepare 
phase.

• Learn phase
– If the proposal is accepted by a majority of acceptors, the 

proposer can send the value to the learners.

23

http://www.vanilladb.org/


Algorithm Of Each Role (1/2)

• Proposer
– Phase 1(a)

• A proposer selects a proposal number n and sends a 
prepare request with number n to a majority of 
acceptors.

– Phase 2(a)
• If the proposer gets a majority of acceptors’ promise, it 

can decide the value. If there are some values 
responded by acceptors in 1(b), choose the highest 
numbered one, else choose any value it want. Send the 
accept request to acceptors.

– Phase 3
• If a majority of acceptors accepted the proposal, send 

it to learners.
24

http://www.vanilladb.org/


Algorithm Of Each Role (2/2)

• Acceptor

– Phase 1(b)

• If it receives a prepare request with a number higher 
than it has promised, it responds to the request with a 
promise not to accept any more proposals numbered 
less than n and with the highest-numbered proposal (if 
any) that it has accepted.

– Phase 2(b)

• If it receives an accept request with a number not less 
than it has promised, it accepts the proposal.

• Learner

– Learn any value sent by any proposer.
25

http://www.vanilladb.org/


Another Way for Learn Phase

• If the acceptors accept any proposal, then they send the 
proposals to all the learners. Since the accepted proposal 
isn’t considered chosen only if a majority of acceptors 
accept it. The learner can only learn the proposal if it 
receives accepted proposals from a majority of acceptors.

• This way decreases one communication round, but 
increases (amount of acceptors * amount of learners) 
messages.

26

Proposer Acceptors

Prepare (1)
Promise (1, {null, null, null})
Accept (1, V)
Accepted (1, V)

Learners

http://www.vanilladb.org/


Progress

• It’s possible that no proposers can make acceptors accept value.
• How to solve it ?

27

Proposers Acceptors

Prepare (1)
Promise (1, {null, null, null})

Accept (1, V) // ignored

Prepare (2)
Promise (2, {null, null, null})

Prepare (3)
Promise (3, {null, null, null})

Accept (2, V2) // ignored

Accept (3, V3) // ignored
…

Prepare (4)
Promise (4, {null, null, null})

Learners

http://www.vanilladb.org/


Total Order via Paxos

• Now we know how Paxos works: each Paxos
instance reaches consensus on a single value.

• How to use Paxos to achieve total order?

– One Paxos run is used to decide the next total 
order message

– After the nodes have a consensus on the ith

message, the nodes can use a new Paxos run to 
decide what the (i+1)th message is

28

http://www.vanilladb.org/


Paxos V.S. Two-Phase Commit

• 3 phases in Paxos:
– Prepare, accept and learn

• 2 phases in 2PC:
– Prepare and commit

• Which two phases in paxos are similar to the two 
phases in two phase commit ?
– Accept phase and learn phase in Paxos are similar to 

prepare phase and commit phase in 2PC

• Why does Paxos need the first phase ?
– To prevent there is another proposer
– In 2PC, there is only one coordinator for one transaction

29

http://www.vanilladb.org/


Paxos V.S. Two Phase Commit

• Why can’t two phase commit use majority to 
make decision?

– In 2PC, if one participant says “no”, then it must 
abort.

• In Paxos, the consensus value is unknown 
when a proposer sends prepare messages. But 
in 2PC, the value is known at the beginning 
(which is “commit”).

30

http://www.vanilladb.org/


Leader

• We can find that Paxos is easier to have progress when 
there are less proposers

• Why not letting the successful proposer become a 
leader?
– The only proposer who can propose in the next Paxos run
– When Acceptors accept a request, they also acknowledge 

the leadership of the proposer
– Clients send request to the leader

• If the old leader fails, a new leader will be elected
• If old leader resumes, there will be two leaders

– Paxos by nature allows multiple leaders
– But guarantees progress if one of them is eventually 

chosen (e.g., by another election)

31

http://www.vanilladb.org/


Zab

• If there is always on one leader, the first phase 
is not needed!

• How?

– The failed leader, after recovery, triggers a re-
election first to determine the final leader before 
sending any proposal

32

http://www.vanilladb.org/


Zab

• In addition, Zab uses TCP connections, which 
guarantees casualty

– Zab could act as a total order broadcast, rather 
than just a consensus protocol

– The learn phase is similar to sequencer broadcast

33

Proposer

http://www.vanilladb.org/


View-Change in Zab

• How to know a leader fail ?
– A Zab leader send heart-beat messages periodically
– If there is one node that didn’t receive messages, it would start 

a reelection process

• Zab doesn’t restrict what re-election algorithm must be 
used

• New leader must ensure
– All messages that are in its transaction log have been proposed 

to and committed by a quorum of followers
– If older leaders proposed a new message, other node would 

simply ignore it by checking its epoch number

34

http://www.vanilladb.org/

