Background

vanilladb.org

http://www.vanilladb.org/

Why do you need a database system?

http://www.vanilladb.org/

To store data,
why not just use a file system?

http://www.vanilladb.org/

Advantages of a Database System

* |t answers queries fast

Q1: among a set of blog pages, find those pages written
by Ash Ketchum after 2011

Q2: among a set of employers, increase the salary by
20% for those who have worked longer then 4 years

http://www.vanilladb.org/

Data Model and Queries (1/3)

Q1: among a set of blog pages, find those pages written by
Ash Ketchum after 2011

Stepl: structure your data by following the relational data

model

— ldentify records (e.g., web pages, authors, etc.) with the same
fields in your data and place them into respective tables

blog pages
blog_id url created author _id
33981 pokemon.com/... | 2012/10/31 729 € record
33982 apache.org/... 2012/11/15 4412 field
users
user_id name balance
729 Ash Ketchum 10,235

m 730 Picachu NULL \’
5

http://www.vanilladb.org/

Data Model and Queries (2/3)

Q1: among a set of blog pages, find those pages written by
Ash Ketchum after 2011

CREATE TABLE blog pages (

blog_id INT NOT NULL AUTO INCREMENT,
url VARCHAR (60),

created DATETIME,

author id INT);

INSERT INTO blog pages (url, created, author id)

VALUES ('pokemon.com/...', 2012/09/18, 729);
blog pages
blog_id url created author_id
33981 pokemon.com/... | 2012/10/31 729
33982 apache.org/... 2012/11/15 4412

http://www.vanilladb.org/

Data Model and Queries (3/3)

Q1: among a set of blog pages, find those pages written by
Ash Ketchum after 2011

Step2: issue queries

SELECT b.blog id
FROM blog pages b, users u
WHERE b.author id=u.user 1d
AND u.name='Ash Ketchum'
AND b.created >= 2011/1/1;

http://www.vanilladb.org/

Advantages of a Database System

* Queries (from multiple users) can execute
concurrently without affecting each other

* |t recovers from crash
— No corrupt data after restart

http://www.vanilladb.org/

Transactions (1/3)

* Each query, by default, is placed in a
transaction (tx for short) automatically

BEGIN TRANSACTION;
SELECT b.blog id
FROM blog pages b, users u
WHERE b.author id=u.user 1id
AND u.name='Ash Ketchum'
AND b.created >= 2011/1/1;
COMMIT TRANSACTION;

http://www.vanilladb.org/

Transactions (2/3)

* You can group multiple queries in a
transaction optionally

* For example, Steven wants to donate $100 to
Picachu:

BEGIN TRANSACTION;
UPDATE users
SET balance=blance-100
WHERE name='Ash Ketchum';
UPDATE users
SET balance=blance+100
WHERE name='Picachu';
COMMIT TRANSACTION;

http://www.vanilladb.org/

Transactions (3/3)

A database ensures the ACID properties of transactions
Atomicity

— All operations in a transaction either succeed (transaction
commits) or fail (transaction rollback) together

Consistency

— After/before each transaction (which commits or rollback), your
data do not violate any rule you have set

— E.g., blog_pages.author_id must be a valid users.user_id
Isolation

— Multiple transactions can run concurrently, but cannot interfere
with each other

Durability

— Once a transaction commits, any change it made lives in DB
permanently (unless overridden by other transactions)

http://www.vanilladb.org/

Assigned Reading

— Java concurrency

— "Database Management
Systems," 3ed, by
Ramakrishnan

Database Management

Ramakrishnan

AR 4

+ Gehrke

http://www.vanilladb.org/
http://docs.oracle.com/javase/tutorial/essential/concurrency/

Coverage

* Java concurrency

* Chaps 2 and 3 on how to store your data into a
DBMS

— ER model and relational model
 Chaps 4 and 5 on queries
— SQL language (DDL and DML)
— Relational algebra
 Chap 19* on how to store your data well
— Easy maintenance
— Answering most queries fast

http://www.vanilladb.org/

Coverage

* Java concu rrency

* Chaps 2 and 3 on how to store your data into a
DBMS

— ER model and relational model
 Chaps 4 and 5 on queries
— SQL language (DDL and DML)
— Relational algebra
e Chap 19* on how to store your data well
— Easy maintenance
— Answering most queries fast

N

http://www.vanilladb.org/

Staring a New Thread

public class HelloRunnable implements Runnable {
public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}

or

public class HelloThread extends Thread {
public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new HelloThread()).start();

}

http://www.vanilladb.org/

What Happened?

public class HelloRunnable implements Runnable {
public void run() {

System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();
}

}

* A new stack is allocated in the memory
scheme

* Your CPU spends time on executing the code
In run ()

http://www.vanilladb.org/

Multiple Stacks, Single Heap

* The heap in memory scheme?

— Stores objects
— Shared by all threads

* Can two threads access the same object?
— Yes

* How?
— Passing the same object to their constructors

http://www.vanilladb.org/

Thread Interference

class Counter {

* Given the same object o private int ¢ = 0;
* Suppose two threads publie vold set(int c) {
execute } ' ’
ce public int get () {
int ¢ = o.get(); return c;
C++;5 /) c--; }

o.set(c); }

 Thread A’s result will be lost if

Thread A: Get c

Thread B: Get c

Thread A: Increment retrieved value; result is 1
Thread B: Decrement retrieved value; result is -1
Thread A: Set result in c; cis now 1.

Thread B: Set result in c; c is now -1.

ok wnNE

http://www.vanilladb.org/

Synchronization

public class SynchronizedCounter {

private int ¢ = 0;

public synchronized void set (int c) {
this.c = c;

}

public synchronized int get () {

return c;

}

public class SynchronizedCounter {
private int ¢ = 0;
public void set(int c) {
e Same as synchronized (this){ this.c =
}
public int get () {
synchronized (this) { return c;
}
}

* Memory scheme?

Cy

}

}

http://www.vanilladb.org/

Still Wrong!

* Solutionl: the caller locks o during the entire
increment/decrement period:

synchronized (o) {
int ¢ = o.get (),
ct+; // or c-—;
o.set(c);

}
e Solution2: callee provides atomic methods

public class SynchronizedCounter {

private int ¢ = 0;

public void synchronized increment() {
cCt+;

}

public synchronized int get () {

return c;

}

http://www.vanilladb.org/

Blocking and Waiting

e Threads are blocked outside a critical section
if some otheris in

* Athread A in a critical section of o can give up
the lock by calling o.wait ()

— So, some other blocking thread B can be in

— A can regain the lock by o .notifyAll () (called
by other threads)

while (c == 10) { // c has upper bound
o.wait ()

}

C++;
o.set(c);

http://www.vanilladb.org/

Coverage

* Chaps 2 and 3 on how to store your data into a
DBMS

— ER model and relational model

http://www.vanilladb.org/

Note

e DBMS # database

* A database is a collection of your data stored
In @ computer

A DBMS (DataBase Management System) is a
software that manages databases

http://www.vanilladb.org/

Storing Data

* Let’s say, you have data in memory to store

 What’s the data in memory (heap) look like?
— Objects
— References to objects

— You define classes, the blueprint

* Could we store these objects and references
directly?

http://www.vanilladb.org/

Data Model

* Definition: A data model is a framework for
describing the structure of databases in a

DBMS

e Common data models: ER model and
relational model

A DBMS supporting the relational model is
called the relational DBMS

http://www.vanilladb.org/

Why ER Model?

Allows thinking your data in OOP way
Entity

— An object (or instance of a class)

— With attributes

Entity group

— A class

— Must define the ID attribute
Relationship between entities

— References (has-a relationship)

— Could be 1-1, 1-many, and many-many

http://www.vanilladb.org/

Why Relational Model?

A realization of ER model
— Allows queries to be defined and answered
— Still logic (not how your data stored physically)
Relation
— Realization of 1) an entity group via table; or 2) a relationship
— Fields/attributes as columns
— Records/tuples as rows
Primary Key
— Realization of ID via a group of fields
Foreign key
— Realization of relationship
— Arecord can have the primary key fields of the other record it refers to
— Only 1-1 and 1-many
— Intermediate relation is needed for many-many

N

http://www.vanilladb.org/

Example: A student DB

students

S-id: int
s-name: varchar(10)
grad-year: int

departments

d-id: int
d-name: varchar(8)

*

major-id: int
1
*
enroll sections
e-id: int sect-id: int
student-id: int 1 course-id: int
section-id: int x prof: int

grade: double

year-offered: int

courses

c-id: int

title: varchar(20)
dept-id: int

http://www.vanilladb.org/

Schema

e Definition: A schema is the structure of a
particular database

 The schema of a relation/table is its fields and
field types

http://www.vanilladb.org/

Coverage

 Chaps 4 and 5 on queries
— SQL language (DDL and DML)
— Relational algebra

http://www.vanilladb.org/

Queries

e Data Definition Language (DDL) on schema
— CREATE TABLE ...
— ALTER TABLE ...
— DROP TABLE ...

 Data Manipulation Language (DML) on records
— INSERT INTO ... VALUES ...
— SELECT ... FROM ... WHERE ...
— UPDATE ... SET ... WHERE ...
— DELETE FROM ... WHERE ...

http://www.vanilladb.org/

Data Model and Queries (1/3)

Q1: among a set of blog pages, find those pages written by

Ash Ketchum after 2011
Stepl: structure your data by following the relational data
model

— ldentify records (e.g., web pages, authors, etc.) with the same
fields in your data and place them into respective tables

33981 pokemon.com/... 2012/10/31 729 <«— record
33982 apache.org/... 2012/11/15 4412 field
<o
_clewy) 729 Ash Ketchum 10,235
“IHg / 730 Picachu NULL

http://www.vanilladb.org/

Data Model and Queries (2/3)

Q1: among a set of blog pages, find those pages written by
Ash Ketchum after 2011

CREATE TABLE blog pages (

blog id INT NOT NULL AUTO INCREMENT,
url VARCHAR (60),

created DATETIME,
author id INT);

INSERT INTO blog pages (url, created, author id)
VALUES ('pokemon.com/...', 2012/09/18, 729);

33981 pokemon.com/... 2012/10/31 729
33982 apache.org/... 2012/11/15 4412

http://www.vanilladb.org/

Data Model and Queries (3/3)

Q1: among a set of blog pages, find those pages written by
Ash Ketchum after 2011

Step2: issue queries

SELECT b.blog id
FROM blog pages b, users u
WHERE b.author id=u.user 1d
AND u.name='Ash Ketchum'
AND b.created >= 2011/1/1;

http://www.vanilladb.org/

How Is a Query Answered?

SELECT b.blog id

FROM blog_Pages b} lusers u

WHERE Db.author id=u.user 1id
AND u.name='Ash Ketchum'
AND b.created >= 2011/1/1;

created author_id user_id balance

prOd UCt(b’ u) 33981 2009/10/31 729 729 Ash Ketchum 10,235
33981 2009/10/31 729 730 Picachu NULL
33982 2012/11/15 4412 729 Ash Ketchum 10,235
33982 2012/11/15 4412 730 Picachu NULL
41770 2012/10/20 729 729 Ash Ketchum 10,235
41770 2012/10/20 729 730 Picachu NULL

blog_id url created author_id

user_id name

33982 - 2012/11/15 4412 730 Picachu NULL

N

http://www.vanilladb.org/

How Is a Query Answered?

SELECT b.blog id

FROM blog pages b, users u

WHERE b.author id=u.user 1id
AND u.name='Ash Ketchum'

AND b.created >= 2011/1/1;

created

select(p, where...)

author_id

created author_id user_id balance
p = p rOd u Ct(bl u) 33981 2009/10/31 729 729 Ash Ketchum 10,235
33981 2009/10/31 729 730 Picachu NULL
33982 2012/11/15 4412 729 Ash Ketchum 10,235
33982 2012/11/15 4412 730 Picachu NULL
41770 2012/10/20 729 729 Ash Ketchum 10,235
41770 2012/10/20 729 730 Picachu NULL

v

http://www.vanilladb.org/

How Is a Query Answered?

SELECT| b.blog id

FROM blog pages b, users u

WHERE b.author id=u.user 1id
AND u.name='Ash Ketchum'
AND b.created >= 2011/1/1;

blog_id

project(s, select...)

s = select(p, where...) T

blog_id url created author_id user_id name balance

http://www.vanilladb.org/

Query Algebra

Operators

— Product, select, project,
join, group-by, etc.

Operands T

— Tables, output of s = select(p, where...)
other operators, 1‘
predicates, etc.

Query plan 7/ \

— A tree that answers a query b u

— Not unique!
A DBMS automatically seeks for the best query plan

N

http://www.vanilladb.org/

Coverage

 Chap 19* on how to store your data well
— Easy maintenance
— Answering most queries fast

http://www.vanilladb.org/

How Good are Your Data?

e Let’s say, if you want to track the topics of a
olog page
* |s this a good table?

33981 pokemon.com/... 2012/10/31 729 programming 5638
33981 pokemon.com/... | 2012/10/31 729 databases 5649
33982 apache.org/... 2012/11/15 4412 programming 5638

33982 apache.org/... 2012/11/15 4412 0S 7423

http://www.vanilladb.org/

Insertion Anomaly

33981 pokemon.com/... 2012/10/31 729 programming 5638
33981 pokemon.com/... | 2012/10/31 729 databases 5649
33982 apache.org/... 2012/11/15 4412 programming 5638
33982 apache.org/... 2012/11/15 4412 0S 7423
33983 apache.org/... 2013/02/15 7412 ?

* A blog cannot be inserted without knowing all
fields of topics (except setting them to null)

http://www.vanilladb.org/

Update Anomaly

33981 pokemon.com/... 2012/10/31 729 Java prog. 5638
33981 pokemon.com/... | 2012/10/31 729 databases 5649
33982 apache.org/... 2012/11/15 4412 programming I5638
33982 apache.org/... 2012/11/15 4412 oS .7423

* |f you forget to update all duplicated cells, you
get inconsistent data

http://www.vanilladb.org/

Deletion Anomaly

33981 pokemon.com/... | 2012/10/31 729 programmiXS638
33981 pokemon.com/... | 2012/10/31 729 databases 649
33982 apache.org/... 2012/11/15 4412 programming 5638
33982 apache.org/... 2012/11/15 4412 0S 7423

* Deleting topics force you to delete the blog
fields too

http://www.vanilladb.org/

Normalization

* Avoids these anomaly through schema
normalization

— 3" normal form
— BCNF normal form

* |dea: break your one, big table into multiple
small, modular tables

— Reuse tables

— Avoid bias towards any particular pattern of
guerying

http://www.vanilladb.org/

