
Transaction Management Part II:
Recovery

vanilladb.org

http://www.vanilladb.org/

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Today’s Topic: Recovery Mgr

2

http://www.vanilladb.org/

Failure in a DBMS

• Types:
– Disk crash, power outage, software error, disaster

(e.g., a fire), etc.

• In this lecture, we consider only:
– Transaction hangs

• Logical hangs: e.g., data not found, overflow, bad input

• System hangs: e.g., deadlock

– System hangs/crashes
• Hardware error, or a bug in software that hangs the

DBMS

3

http://www.vanilladb.org/

Assumptions about Failure

• Contents in nonvolatile storage are not
corrupted

– E.g., via file-system journaling

• No Byzantine failure (zombies)

• Other types of failure will be dealt with in
other ways

– E.g., via replication, quorums, etc.

4

http://www.vanilladb.org/

Review: Naïve A and D

• D given buffers?

• Flush all dirty buffers of a tx before
committing the tx (and returning to the DBMS
client)

5

http://www.vanilladb.org/

Review: Naïve A and D

• What if system crashes
and then recovers?

• To ensure A, DBMS needs
to rollback uncommitted
txs (2 and 3) at sart-up

– Why 3?

• Problems:

– How to determine which txs to rollback?

– How to rollback all actions made by a tx?

6

Tx1 Tx2 Tx3

Crash

Committing

Committed

Committing

flushes due to swapping

http://www.vanilladb.org/

Review: Naïve A and D

• Idea: Write-Ahead-Logging (WAL)

– Record a log of each modification made by a tx

• E.g., <SETVAL, <TX>, <BLK>, <OFFSET>, <VAL_TYPE>,
<OLD_VAL> >

• In memory to save I/Os

– To commit a tx,

1. Write all associated logs to a log file before flushing a
buffer

2. After flushing, write a <COMMIT, <TX>> log to the log file

– To swap a dirty buffer (in BufferMgr)

• All logs must be flushed before flushing a buffer

7

http://www.vanilladb.org/

Review: Naïve A and D

• Which txs to rollback?
– Observation: txs with COMMIT logs must have flushed all

their dirty blocks
– Ans: those without COMMIT logs in the log file

• How to rollback a tx?
– Observation: each action on the disk:
1. With log and block
2. With log, but without block
3. Without log and block
– Ans: simply undo actions that are logged to disk, flush all

affected blocks, and then writes a <ROLLBACK, <TX>> log
– Applicable to self-rollback made by a tx

8

http://www.vanilladb.org/

Review: Naïve A and D

• Assumption of WAL: each block-write either
succeeds or fails entirely on a disk, despite
power failure

– I.e., no corrupted log block after crash

– Modern disks usually store enough power to finish
the ongoing sector-write upon power-off

– Valid if block size == sector size or a journaling file
system (e.g., EXT3/4, NTFS) is used

• Block/physical vs. metadata/logical journals

9

http://www.vanilladb.org/
http://en.wikipedia.org/wiki/Journaling_file_system

Review: Caching Logs

• Like user blocks, the blocks of the log file are
cached

– Each tx operation is logged into memory

– To avoid excessive I/Os

• Log blocks are flushed only on either

– Tx commit, or

– Flushing of data buffer

10

http://www.vanilladb.org/

System Components related to
Recovery

• The log manager manages the caching for logs
– Does not understand the semantic of logs

• The buffer manager ensures WAL for each
flushed data buffer

• The recovery manager ensures A and D by
deciding:
– What to log (semantically)

– When to flush log tail and buffers

– How to rollback a tx

– How to recover a DB from crash

11

http://www.vanilladb.org/

Actions of Recovery Manager

1. Actions during normal tx processing:
• Adds log records to cache

• Flushes log tail and buffers at the
right time (e.g., COMMIT)

• Rolls back txs
– By undoing changes made by each tx

• On behalf of normal txs

2. Actions after system re-start (from a failure):
• Recovers the database to a consistent state

– By undoing changes made by all incomplete tx

• In a dedicated recovery tx (before all normal txs start)

12

Txn B:
Write y = 10;
Read x;
If (x>=4)

Write x=x+1;
else

Rollback;
Commit;

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

13

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

14

http://www.vanilladb.org/

Log Records

• In order to be able to roll back a transaction, the
recovery manager saves information in the log

• Recovery manager add a log record to the log
cache each time a loggable activity occurs

– Start

– Commit

– Rollback

– Update record

– Checkpoint

15

http://www.vanilladb.org/

Log Records

• The log records of txn 27:
<START, 27>

<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>

<COMMIT, 27>

• In general, multiple txns will be writing to the log
concurrently, and so the log records for a given
txn will be dispersed throughout the log
<START, 27>

<ROLLBACK, 23>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>

<COMMIT, 27>

...

Txn 27:
start;
getVal(blk0, 46);
setVal(blk1, 58, “abc”);
commit;

block Id

offset

old value

16

http://www.vanilladb.org/

Why COMMIT/ROLLBACK Logs?

• Used to identify incomplete txs during
recovery

• Incomplete txs?

– E.g., those without COMMIT/ROLLBACK logs on
disk

– To be discussed later

17

http://www.vanilladb.org/

Flushing COMMIT

• When committing a tx, the COMMIT log must be
flushed before returning to the user
– Why?

• What if the system returns to the client but
crashes before writing a commit log?
– The recovery manager will treat it as an incomplete tx

and undo all its changes

– Dangers durability

18

public void onTxCommit(Transaction tx) {
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CommitRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

http://www.vanilladb.org/

Rollback

• The recovery manger can use the log to roll
back a tx by undoing all tx’s modifications

• How to undo txn 27?
...

<START, 27>

<ROLLBACK, 23>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

...

?

19

http://www.vanilladb.org/

Rollback

• Undo txn 27
...

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<ROLLBACK, 23>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<ROLLBACK, 27>
undo starts from log tail

The log records of T are more likely to be at the end of log file

restores old values

ensures the correctness of multiple modifications

20

http://www.vanilladb.org/

Rollback

• The algorithm for rolling back txn T

1. Set the current record to be the most recent log
record

2. Do until the current record is the start record for T:

a) If the current record is an update record for T, then write
back the old value

b) Move to the previous record in the log

3. Flush all dirty buffers made by T

4. Append a rollback record to the log file

5. Return

21

http://www.vanilladb.org/

Codes for Rollback

• Notice that all dirty buffers are flushed (to be
explained later)

22

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRollback() {
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.txNumber() == txNum) {

if (rec.op() == OP_START)
return;

rec.undo(txNum);
}

}
}

http://www.vanilladb.org/

Working with Locks

• When a tx T that is rolling back, recovery
manager requires the DBMS to prevent any
access (by other txs) to the data modified by T

– Otherwise, undoing an operation of T may
override later modifications

• Can easily be enforced by, for example, S2PL

23

http://www.vanilladb.org/

Working with Memory Managers

• No tx should be able to modify the buffer
when that buffer, and its logs, are being
flushed; and vise versa

• How?

• For each block, pinning and flushing contend
for a short-term X lock, called latch

24

http://www.vanilladb.org/

Latching on Blocks

• To modify a block:
1. Acquire the latch of that block
2. Log the update (in memory, done by LogMgr)
3. Perform the change
4. Release the latch

• To flush a buffer containing a block:
1. Acquire the latch of that block (after pin())
2. Flush corresponding log records
3. Flush buffer
4. Release the latch

• Latches have nothing to do with
– Locks in S2PL
– pinning/unpinning in BufferMgr (more like mid-term S locks)

25

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

26

http://www.vanilladb.org/

Recovery

• When the DMBS restart (from crash), the
recovery manager is responsible to restore the
database

– All incomplete txs should be rolled back

• How to identify incomplete txs?

27

http://www.vanilladb.org/

Incomplete Txs (1)

• Recall that when committing/rolling back a tx, the
CIMMIT/ROLLBACK log must be flushed before
returning to the user

28

public void onTxCommit(Transaction tx) {
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CommitRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

http://www.vanilladb.org/

Incomplete Txs (2)

• Definition: txs without COMMIT or ROLLBACK
records in the log file on disk

• Could be in any of following states when crash
happens:

1. Active

2. Committing (but not completed yet)

3. Rolling back

29

http://www.vanilladb.org/

Undo-only Recovery Algorithm

30

http://www.vanilladb.org/

Undo-only Recovery Algorithm

31

• Flushing and checkpointing will be explained later

public void recover() { // called on start-up
doRecover();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CheckpointRecord().writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRecover() {
Collection<Long> finishedTxs = new ArrayList<Long>();
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.op() == OP_CHECKPOINT)

return;
if (rec.op() == OP_COMMIT || rec.op() == OP_ROLLBACK)

finishedTxs.add(rec.txNumber());
else if (!finishedTxs.contains(rec.txNumber()))

rec.undo(txNum);
}

}

http://www.vanilladb.org/

Working with Other System
Components

• No special requirement since the recovery tx
is the only tx in system at startup

– Normal txs start only after the recovery tx finishes

32

http://www.vanilladb.org/

The above RecoveryMgr will make
system unacceptably slow!

33

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

34

http://www.vanilladb.org/

Why Slow?

• Slow commit

– Flushes: undo logs, dirty blocks, and then
COMMIT log

• Slow rollback

– Flushes: dirty blocks and ROLLBACK log

• Slow recovery

– Recovery manager need to scan the entire log file
(backward from tail) every time

35

http://www.vanilladb.org/

Force vs. No-Force

• Force approach

– When committing tx, all modifications need to be
written to disk before returning to user

• When client committing a txn

1. Flush the logs till the LSN of the last modification

2. Flush dirty pages

3. Write a COMMIT record to log file on disk

4. Return

36

http://www.vanilladb.org/

Force vs. No-Force

• Do we really need to flush all dirty blocks
when committing a tx?

• Why not just writing logs?

– No flushing data blocks faster commit

• But we need redo!

– Committed txs may not be reflected to disk

– Buffer state in memory need to be reconstructed

37

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

new value

38

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27

undo txn 29

39

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27

undo txn 28

40

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

41

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

Redo

42

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

Redo

redo

43

http://www.vanilladb.org/

Undo-Redo Recovery

• Undo and redo

Beginning of log
<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

<START, 27>

<COMMIT, 23>

<SETVAL, 27, dept.tbl, 2, 40, 15, 9>

<START, 28>

<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, 4, 5>

<SETVAL, 27, dept.tbl, 2, 40, 9, 25>

<START, 29>

<SETVAL, 29, emp.tbl, 1, 0, 1, 9>

<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

Redo

redo

44

http://www.vanilladb.org/

The Undo-Redo Recovery Algorithm V1

From Database Design and Implementation by Edward Sciore, chapter 14.
45

http://www.vanilladb.org/

Physical Logging

• This algorithm does not consider the actual
content stored in the disk

– Depending on swapping state in buffer manager,
some actions may be unnecessary or redundant

• Actions need to be undone/redone following
the exact order in the log file

46

http://www.vanilladb.org/

Can We Make Rollback Faster Too?

• Recall that when rolling back a tx, we flush
dirty pages and write a rollback log

47

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRollback() {
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.txNumber() == txNum) {

if (rec.op() == OP_START)
return;

rec.undo(txNum);
}

}
}

http://www.vanilladb.org/

Slow Rollback

• Why flushing dirty buffers?
– So the recovery tx can skip txs that have been rolled back

• Is it necessary to flush the rollback log record before
return?
– No durability issue, losing rollback record just results in

rollback again

48

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRollback() {
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.txNumber() == txNum) {

if (rec.op() == OP_START)
return;

rec.undo(txNum);
}

}
}

http://www.vanilladb.org/

Fast Rollback

• No-force:

– Do not flush dirty pages during rollback

– In addition, there’s no need to keep the ROLLBACK
record in cache at all!

• Aborted txs will be rolled back again during
startup recovery

– No harm to C: undo operations are idempotent
(i.e., rolling back a tx several times makes no
difference than rolling back once)

49

http://www.vanilladb.org/

The Undo-Redo Recovery Algorithm V2

From Database Design and Implementation by Edward Sciore, chapter 14.
50

No (b). All txs not in the committed list are un-done (maybe again)

http://www.vanilladb.org/

Undo or Redo Phase First?

• Does not matter for the recovery algorithm V1

• But matters for V2!

– Undo phase must precede the redo phase

– Otherwise, C may be damaged due to aborted txs

– E. g.,

– Rolling back T23 erases the modification made by T27

51

<START, 23>

<SETVAL, 23, dept.tbl, 10, 0, 15, 35>

// T23 rolls back (not logged) and release locks

<START, 27>

<SETVAL, 27, dept.tbl, 10, 0, 15, 40>

<COMMIT, 27>

http://www.vanilladb.org/

Undo-Only vs. Undo-Redo Recovery

• Pros of undo-only:

– Faster recovery

– No redo logs

• Cons of undo-only:

– Slower commit/rollback

• Which one?

– Commercial DBMSs usually choose no-force
approach + undo-redo recovry

52

http://www.vanilladb.org/

Steal vs. No Steal

• Can the changes be flushed back to disk
before txn commits?
– Buffer manager replaces the modified page for

other transaction’s need

– Steal approach

• If we can prevent buffers of a uncommitted tx
from being flushed, we don’t need undo!
– How? Pin all the modified buffers until tx ends

– Redo-only recovery

53

http://www.vanilladb.org/

No redo, no undo with force + no steal?

54

http://www.vanilladb.org/

Redo-Only Recovery and Beyond

• No-steal is not practical

• Dirty pages still need to be flushed before
commits

– To ensure durability

• How about crash during flushing?

55

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

56

http://www.vanilladb.org/

What if system crashes again during
recovery?

57

http://www.vanilladb.org/

Should we log the undos/redos?

58

http://www.vanilladb.org/

Idempotent Recovery

• No!

• The rollbacks/recovery need not be undone as
long as they are idempotent
– The database will be the same even if the

rollbacks/recovery execute several times

• For each modification done by undo/redo, the
recovery manager passes -1 as the LSN
number to the buffer manager
– See SetValueRecord.undo()

59

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

60

http://www.vanilladb.org/

Checkpointing

• As the system keeps processing requests, the log file
may become very large
– Running recovery process is time consuming

– Can we just read a portion of the log?

• A checkpoint is like a consistent snapshot of the DBMS
state
– All earlier log records were written by “completed” txns

– Those txns’ modifications have been flushed to disk

• During recovery, the recovery manager can ignore all
the log records before a checkpoint

61

http://www.vanilladb.org/

Quiescent Checkpointing

1. Stop accepting new transactions

2. Wait for existing transactions to finish

3. Flush all modified buffers

4. Append a quiescent checkpoint record to the
log and flush it to disk

5. Start accepting new transactions

62

http://www.vanilladb.org/

Quiescent Checkpointing

Undo Redo

63

http://www.vanilladb.org/

Quiescent Checkpointing is Slow

• Quiescent checkpointing is simple but may
make the system unavailable for too long
during checkpointing process

64

http://www.vanilladb.org/

Root Cause of Unavailability

1. Stop accepting new transactions

2. Wait for existing transactions to finish

3. Flush all modified buffers

4. Append a quiescent checkpoint record to the
log and flush it to disk

5. Start accepting new transactions

65

May be very long!

http://www.vanilladb.org/

Can we shorten the quiescent period?

66

http://www.vanilladb.org/

Nonquiescent Checkpointing

1. Stop accepting new transactions

2. Let 𝑇1, … , 𝑇𝑘 be the currently running
transactions

3. Flush all modified buffers

4. Write the record <NQCKPT, 𝑇1, … , 𝑇𝑘 > and
flush it to disk

5. Start accepting new transactions

67

http://www.vanilladb.org/

Recovery with Nonquiescent
Checkpointing

• Txs not in checkpoint log are flushed thus can be
neglected

Undo

Redo

68

Tx0 has been committed

Only tx2 needs to be undone

http://www.vanilladb.org/

Working with Memory Managers

• No tx should be able to
1. append the log, and
2. modify the buffer

between steps 3 and 4
• How?
• The checkpoint tx obtains

1. latch of log file, and
2. latches of all blocks in BufferMgr

before step 3
• Then release them after step 4

69

http://www.vanilladb.org/

When to Checkpoint?

• By taking checkpoints periodically, the recovery
process can become more efficient

• When is a good time to checkpoint?
– During system startup (after the recovery has

completed and before any txn has started)

– Execution time with low workload (e.g., midnight)

70

public void recover() { // called on start-up
doRecover();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CheckpointRecord().writeToLog();
VanillaDb.logMgr().flush(lsn);

}

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

71

http://www.vanilladb.org/

Early Lock Release

• Recall that there are usually meta-structures in a
DBMS
– E.g., FileHeaderPage in a RecordFile

– Indices

• Poor performance if they are locked in strict
manner
– E.g., S2PL on FileHeaderPage serializes all

insertions and deletions

• Locks on meta-structures are usually released
early

72

http://www.vanilladb.org/

Logical Operations

• Logical insertions to a RecordFile:
– Acquire locks of FileHeaderPage and target object

(RecordPage or a record) in order
– Perform insertion
– Release the lock of FileHeaderPage (but not the

object)

• Other examples: insertions to an index
– Following a lock-crabbing protocol

• Better I
• No harm to C
• Needs special care to ensure A and D

73

http://www.vanilladb.org/

Problems of Logical Operations

• Suppose
1. T1 inserts a record A to a table/file

• FileHeaderPage and a RecordPage modified

2. T2 inserts another record B to the same table
• Same FileHeaderPage and another RecordPage

modified

3. T1 aborts

• If the physical undo record is used to rollback T1,
B will be lost!

74

Header Pages

http://www.vanilladb.org/

Undoing Logical Operations

• How to rollback T1?

– By executing a logical deletion of record A

• Logical operations need to be undone
logically

75

http://www.vanilladb.org/

Rolling Back a Transaction

• What if T1 aborts in the middle of a logical operation?

• Log each physical operation performed during a
logical operation

• So partial logical operation can be undone, by
undoing the physical operations

76

Beginning of log
<START, T1>

<SETVAL, T1, RC, 15, 35>

<OPBEGIN, T1, OP1> // insert a record

<SETVAL, T1, H, 100, 105>

<SETVAL, T1, RA, 0, 700>

<OPEND, T1, OP1, delete RA>

... // other tx can access H (early lock release)

older

newer

Identifier can be LSN

http://www.vanilladb.org/

Rolling Back a Transaction

• Undo OP1 using physical logs if it is not completed yet
– Locks of physical objects are not released so nothing can

go wrong

• OP1 must be undone logically once it is complete
– Some locks may be released early (e.g., that of H)
– Must acquire the locks of physical objects again during

logical undo
77

Beginning of log
<START, T1>

<SETVAL, T1, RC, 15, 35>

<OPBEGIN, T1, OP1> // insert a record

<SETVAL, T1, H, 100, 105>

<SETVAL, T1, RA, 0, 700>

<OPEND, T1, OP1, delete RA>

... // other tx can access H

older

newer

Logical undo information

T1 aborts

http://www.vanilladb.org/

Undo an Undo

• What if system crashes when T1 is undoing a
logical undo?
– The “undo” need to be undone, but how?

• The undo is itself an logical operation

• Why not log all the physical operations of
such an undo?
– The logical undo can be undone now

– Then at recovery time, logically undo the target
logical operation again

78

http://www.vanilladb.org/

Undo an Undo

• Be prepared for crashes

79

Beginning of log
<START, T1>

<SETVAL, T1, RC, 15, 35>

<OPBEGIN, T1, OP1> // insert a record

<SETVAL, T1, H, 100, 105>

<SETVAL, T1, RA, 0, 700>

<OPEND, T1, OP1, delete RA>

...

<SETVAL, T1, H, 123, 100>

<SETVAL, T1, RA, 700, 0>

<OPABORT, T1, OP1>

older

newer

T1 aborts

Released locks are acquired again

Some locks are released

http://www.vanilladb.org/

Crashes

• Two goals of restart recovery:
– Rolling back incomplete txs

– Reconstruct memory state

• Handled by UNDO and REDO phase respectively

• Undo-redo recovery algorithm does not work anymore!

• Why?

• Since locks may be released early, physical logs may
depend on each other

• Undoing/redoing physical logs must be carried out in
the order they happened to ensure C

80

http://www.vanilladb.org/

Example

• To carry out the last two physical ops (i.e., “undo of undo”)
– T2 needs to be redone physically first

• Redoing T2 requires T1 to be redone partially, even if T1
will be rolled back eventually

81

Beginning of log
<START, T1>

<SETVAL, T1, RC, 15, 35>

<OPBEGIN, T1, OP1> // insert a record

<SETVAL, T1, H, 100, 105>

<SETVAL, T1, RA, 0, 700>

<OPEND, T1, OP1, delete RA>

...

// T2 inserts another record (changing H),

// makes some physical changes, and then commits

...

<SETVAL, T1, H, 123, 100>

<SETVAL, T1, RA, 700, 0>

<OPABORT, T1, OP1>Crash

T1 aborts

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

82

http://www.vanilladb.org/

Recovery by Repeating History

• Idea:
1. Repeat history: replay all dependent physical

operations (from the last checkpoint) following the
exact order they happened
• So the memory state can be reconstructed correctly

2. Resume rolling back all incomplete txs
• Logically for each completed logical operation

• This leads to the state-of-the-art recovery
algorithm, ARIES

• Steps 1/2 are called REDO/UNDO phase in ARIES
– Very different from REDO/UNDO phase in previous

sections

83

http://www.vanilladb.org/

Compensation Logs

• Replaying history includes replaying previous undos
– There may be previous undos for some physical ops (due

to, e.g., tx rollbacks or crashes)
– Need to be replayed too! But not logged currently

• How to replay history in a single phase (log scan)?
• When undoing a physical op, append an redo log,

called compensation log, for such undo in LogMgr
• Then , during recovery, RecoveryMgr can simply replay

history by redoing both physical and compensation
logs
– In the order they appear in the log file (from checkpoint to

tail)

84

http://www.vanilladb.org/

REDO-UNDO Recovery Algorithm V1

• Assuming no logical ops
• Incomplete txs are identified during the REDO phase

and kept into a undo list
85

http://www.vanilladb.org/

REDO-UNDO Recovery Algorithm V1

• Can handle repeated crashes during recovery

– Although some redos and undos may be unnecessary

86

http://www.vanilladb.org/

Supporting Logical OPs
• Keep logging (even during UNDO phase):

– Physical logs for physical ops during a
logical undo

– Compensation logs for physical undos

87

http://www.vanilladb.org/

REDO-UNDO Recovery
Algorithm V2• REDO: repeat history

– Reply both physical
and compensation
logs

• UNDO:
– Physically for physical

and incomplete
logical ops

– Logically for
completed logical ops

– Skip all aborted
logical ops, as
undoing a logical op is
not idempotent
anymore

88

http://www.vanilladb.org/

Non-Idempotent Logical OPs

• Note that logical operations, and their logical undos,
are not idempotent

• Completed logical ops and logical undos are repeated
using physical logs
– In REDO phase
– “history” grows

• So, UNDO phase must skip completed logical undos
– When rolling back a tx, we, upon finding a record

<OPABORT, Ti, Oj>, need to skip all preceding records
(including OPEND record for Oj) until <OPBEGIN, Ti, Oj>

– An operation-abort log record would be found only if a tx
that is being rolled back had been partially rolled back
earlier

89

http://www.vanilladb.org/

Resume Rollbacks

• How to resume rolling back all incomplete txs in
UNDO phase?

• For each incomplete tx:

• Completed logical undos must be skipped (discussed
earilier)

• In addition, completed physical undos can be skipped

• Optional; just for better performance

90

http://www.vanilladb.org/

Optimization: the PrevLSN and
UndoNextLSN pointers

• Logging:
– Each physical log keeps

the PrevLSN
– Each compensation log

keeps the UndoNextLSN

• RecoveryMgr
– Remembers the last

pointer value of each tx in
the undo list

– The next LSN to process
during UNDO phase is the
max of the pointer values

• Tx rollback can be
resumed

91

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

92

http://www.vanilladb.org/

Problems of Physical Logging

• Physical logs will be huge!

• For example, if the system wants to sort
records in a file, all ops will be logged

– Common when maintaining the indices

• How to save the number of physical logs?

93

http://www.vanilladb.org/

Physiological logging

• Observe that, during a sorting op, all physical ops to
the same block will be written to disk in just one flush

• Why not log all these physical ops as one logical op?
– As long as this logical op can be undone logically

• Called physiological logs, in that
– Physical across blocks

– Logical within each block

• Significantly save the cost of physical logging

• But complicates recovery algorithm further
– As REDOs are not idempotent anymore

94

http://www.vanilladb.org/

REDO-UNDO Recovery Algorithm V3

• During UNDO, threat each physiological op as
physical

– Write compensation log that is also a physiological
op

• During REDO, skip all physiological ops and
their compensations that have been replayed
previously

– How?

95

http://www.vanilladb.org/

Avoiding Repeated Replay

• Keep a PageLSN for
each block

• Replay a
physiological log iff
its LSN is larger
than the PageLSN
of the target block

• Further optimized
in ARIES

96

http://www.vanilladb.org/

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

97

http://www.vanilladb.org/

The VanillaDB Recovery Manager

• Log granularity: values
• Implements ARIES recovery algorithm

– Steal and non-force
– Physiological logs
– No optimizations

• Non-quiescent checkpointing (periodically)
• Related package

– storage.tx.recovery

• Public class
– RecoveryMgr

– Each transaction has its own recovery manager

98

http://www.vanilladb.org/

References

• Database Design and Implementation, chapter 14.
Edward Sciore.

• Database management System 3/e, chapter 16.
Ramakrishnan Gehrke.

• Database system concepts 6/e, chapter 15, 16.
Silberschatz.

• Hellerstein, J. M., Stonebraker, M., and Hamilton,
J. Architecture of a database system. Foundations
and Trends in Databases 1, 2, 2007

99

http://www.vanilladb.org/

You Have Assignment!

100

http://www.vanilladb.org/

Assignment: ARIES Optimization

• The current implementation of ARIES in VanillaDB
only focused on correctness

• Checkpointing and recovery might be slow

• Basically, you can do anything to make whole system
faster during normal operations or recovery

• But the correctness still needs to be hold

– We will provide test cases to ensure this

http://www.vanilladb.org/

Assignment: ARIES Optimization

• For example, our checkpointing is very slow

– VanillaDB creates a checkpoint by flushing all buffers to
disks

• We can make checkpointing faster, but it needs some
additional information:

– Fuzzy checkpointing

– Dirty page table

– Transaction table

• Read this paper, or get more information in TA’s class

http://www.vanilladb.org/
http://db.csail.mit.edu/madden/html/aries.pdf

